Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1518-1528     CSTR: 32134.14.1005.4537.2024.054      DOI: 10.11902/1005.4537.2024.054
  研究报告 本期目录 | 过刊浏览 |
TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究
张雅妮(), 王思敏, 樊冰
西安石油大学材料科学与工程学院 西安 710065
Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment
ZHANG Yani(), WANG Simin, FAN Bing
School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
引用本文:

张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
Yani ZHANG, Simin WANG, Bing FAN. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1518-1528.

全文: PDF(8403 KB)   HTML
摘要: 

采用高温高压腐蚀实验及电化学测试手段研究了TC4钛合金在O2 + CO2气氛的高温高压模拟水沉积液中表面形成的膜层情况。TC4钛合金在实验条件下具有良好的耐蚀性。在O2 + CO2气氛中,TC4钛合金表面膜层为n型半导体型,主要由TiO2和Al2O3组成。随着膜层中Al2O3含量的增加,膜层对基体的保护性减弱。循环极化测试结果显示,阳极极化可以改善钛合金表面膜层的质量;但随着腐蚀系统中O2含量的降低,膜层中的缺陷增多,致密性变差,膜层对基体的保护性减弱。

关键词 TC4钛合金钝化膜层O2 + CO2气氛电化学    
Abstract

The corrosion of oil tube goods related with the oil enhanced recovery technology of air injection is very serious issue. Herewith, the corrosion and passivation behavior of TC4 Ti-alloy in a simulated downhole liquid in high-temperature and high-pressed O2 + CO2 environment were studied via a high temperature autoclave with electrochemical measurements. The investigation shows that TC4 alloy has good corrosion resistance in high temperature and high pressure O2 + CO2 environment. The passive film of TC4 alloy has n-type semiconductor characteristic, which is mainly composed of TiO2 and Al2O3. The protective property of the passive film formed on the substrate is weakened with the increase of Al2O3 content in the film. The results of electrochemical tests show that anodic polarization improve the quality of the passive film formed on the surface of TC4 Ti-alloy. With the decreasing O2 content in the system, the defects in the passive film increase, while the compactness of film decrease, and thereby the protective property of the film is weakened.

Key wordsTC4 Ti-alloy    passive film    O2 + CO2 solution environment    electrochemistry
收稿日期: 2024-02-21      32134.14.1005.4537.2024.054
ZTFLH:  TG172  
基金资助:陕西省自然科学基础研究计划(2022JM-269)
通讯作者: 张雅妮,E-mail: zhangyn@xsyu.edu.cn,研究方向为金属材料的腐蚀与防护
Corresponding author: ZHANG Yani, E-mail: zhangyn@xsyu.edu.cn
作者简介: 张雅妮,女,1977年生,博士,副教授
No.

Total pressure

MPa

T

oC

Flow rate

m‧s-1

Partial pressure

MPa

Corrosiontime

h

A101500.15

2 MPa CO2

(unoxygenated)

24
B

2 MPa CO2+

1 MPa O2

24
C

2 MPa CO2+

1 MPa O2

72
表1  失重腐蚀实验参数
图1  TC4钛合金C组实验前后宏观形貌
No.S / cm2t / hM / gVcorr / mm‧a-1V¯corr / mm‧a-1
A113.3143240.00010.00610.0061
A213.3155240.00010.0061
A313.1520240.00010.0062
B113.2453240.00010.00610.0061
B213.1883240.00010.0061
B313.4093240.00010.0060
C113.5079720.00010.00200.0027
C213.4029720.00020.0040
C313.5868720.00010.0020
表2  TC4钛合金在3种气氛环境下的腐蚀速率
图2  TC4钛合金腐蚀实验后的腐蚀产物形貌
PositionCTiAlVSiO
0014.8486.287.73-1.15-
002-88.622.233.07-6.07
003-55.004.262.190.4838.07
表3  TC4钛合金表面标记处腐蚀产物的EDS分析结果 (atomic fraction / %)
图3  不同环境下腐蚀后的TC4钛合金表面AFM图
图4  不同环境中试样表面产物的XRD谱
图5  不同环境下TC4钛合金的循环极化曲线
EnvironmentEcorr / mVI0 / A‧cm-2Ba / mVBc / mV
O2-3902.414 × 10-6479.17157.59
O2 + CO2-5683.022 × 10-61017.4158.1
CO2-6493.386 × 10-6290.72192.84
表4  不同环境下TC4循环极化正扫段曲线拟合结果
图6  不同环境下TC4钛合金的阻抗图谱
图7  不同环境下TC4钛合金的阻抗谱等效电路图
EnvironmentRs / Ω∙cm2Qdl / F∙cm-2ndlRct / Ω∙cm2Cf / F∙cm-2Rf / Ω∙cm2Rs / Ω∙cm2
O20.88644.059 × 10-40.6947239.83.966 × 10-40.78366.609 × 104
O2 + CO21.6327.578 × 10-40.6321291.12.492 × 10-4-3.579 × 104
CO20.62961.116 × 10-30.5874191.22.74 × 10-4-1.183 × 104
表5  TC4钛合金在不同环境中的阻抗谱拟合参数
图8  TC4钛合金C组试样形成的腐蚀产物膜的XPS分析
图9  TC4钛合金试样在不同环境下形成的腐蚀产物膜中O峰的精细分析
EnvironmentCompoundAtomic ratioArea ratio

Content ratio Anatase

Rutile

Content ratio Al2O3

TiO2

Atmosphere530.44-TiO245.9110.780.22
531.60-TiO235.720.78
532.64-Al2O318.370.4

No. A

(unoxygenated-24 h)

530.33-TiO221.650.472.10.47
531.57-TiO246.231
532.52-Al2O332.120.69

No. B

(1 MPa O2-24 h)

529.68-TiO220.920.432.30.40
530.6-TiO249.351
532.54-Al2O329.730.57

No. C

(1 MPa O2-72 h)

529.61-TiO259.6510.530.098
531.17-TiO231.430.53
532.77-Al2O38.920.15
表6  TC4钛合金试样在不同环境下形成的腐蚀产物膜XPS分析结果
图10  TC4钛合金在不同腐蚀环境中的Mott-Schottky曲线图
EnvironmentSlopeND / cm-3EFB / V
O22.62 × 1094.72 × 1018-0.26737
O2+ CO22.37 × 1095.22 × 1018-0.41775
CO21.70 × 1097.28 × 1018-1.16065
表7  TC4钛合金钝化膜半导体的掺杂浓度和平带电位
1 Yang X F. Research on the safety of casing in steam-assisted air stimulation [J]. Contemp. Chem. Ind., 2015, 44: 2179
1 (杨雪峰. 注空气辅助蒸汽吞吐油套管安全性研究与应用 [J]. 当代化工, 2015, 44: 2179)
2 Geng S J, Chen H. Integrated anticorrosion technology for adjusting displacement injection system of air foam [J]. Oil-Gas Field Surf. Eng., 2010, 29(7): 79
2 (耿师江, 陈 华. 用于空气泡沫调驱注入系统的综合防腐技术 [J]. 油气田地面工程, 2010, 29(7): 79)
3 Lin W M, Li X F, Chen X L, et al. Corrosion and protection in air-foam injection process [J]. Oilfield Chem., 2010, 27: 342
3 (林伟民, 李雪峰, 陈秀玲 等. 注空气泡沫驱油过程中的腐蚀与防护研究 [J]. 油田化学, 2010, 27: 342)
4 Sui G Y. Protecting corrosion in Zheng-408 oil displacement well by in-situ combustion [J]. Corros. Prot. Petrochem. Ind., 2007, 24(3): 4
4 (隋国勇. 郑408火烧驱油注气井油管腐蚀与防护 [J]. 石油化工腐蚀与防护, 2007, 24(3): 4)
5 Pastorek F, Hadzima B, Fintová S, et al. Influence of anodic oxidation on the polarization resistance of Ti6Al4V alloy after shot peening [J]. Mater. Sci. Forum, 2015, 811: 59
6 Tsai Y T, Hou K H, Bai C Y, et al. The influence on immersion time of titanium conversion coatings on electrogalvanized steel [J]. Thin Solid Films, 2010, 518: 7541
7 Kofstad P, Anderson P B, Krudtaa O J. Oxidation of titanium in the temperature range of 800-1200oC [J]. J. Less-Com. Met., 1961, 3: 89
8 Zhu M, Wang H T, Keller A A, et al. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths [J]. Sci. Total Environ., 2014, 487: 375
9 Jerkiewicz G, Strzelecki H, Wieckowski A. A new procedure of formation of multicolor passive films on titanium: compositional depth profile analysis [J]. Langmuir, 1996, 12: 1005
10 Wang S B, Pan L, Song J J, et al. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance [J]. J. Am. Chem. Soc., 2015, 137: 2975
11 Müller A, Benninghoven A. Investigation of surface reactions by the static method of secondary ion mass spectrometry: V. The oxidation of titanium, nickel, and copper in the monolayer range [J]. Surf. Sci., 1974, 41: 493
12 Platau A, Johansson L I, Hagström A L, et al. Oxidation of cerium and titanium studied by photoelectron spectroscopy [J]. Surf. Sci., 1977, 63: 153
13 Pouilleau J, Devilliers D, Garrido F, et al. Structure and composition of passive titanium oxide films [J]. Mater. Sci. Eng., 1997, 47B: 235
14 Mccafferty E, Wightman J P. An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium [J]. Appl. Surf. Sci., 1999, 143: 92
15 Lv C X. Research on the thermal oxidation behavior of TC4、TA19 and Ti17 titanium alloys [D]. Shenyang: Liaoning University, 2022
15 (吕彩霞. TC4、TA19、Ti17钛合金的氧化行为研究 [D]. 沈阳: 辽宁大学, 2022)
16 Liu Y, Yang D Z, He S Y, et al. Process and properties of thermal oxidation layer on surface of titanium alloy [J]. Mater. Mech. Eng., 2003, 27(9): 27
16 (刘 勇, 杨德庄, 何世禹 等. 钛合金表面的热氧化层工艺及性能 [J]. 机械工程材料, 2003, 27(9): 27)
17 Yan W, Wang X X. Characterization of the surface oxygen-diffusion zone of the thermally oxidized titanium [J]. Rare Metal Mat. Eng., 2005, 34: 471
17 (严 伟, 王小祥. 热氧化处理钛表面渗氧层的组织与性能研究 [J]. 稀有金属材料与工程, 2005, 34: 471)
18 Zhang C Y, Li C T, Zhang J. Study on effect of thermal oxidation treatment on wear resistance of titanium alloy [J]. Surf. Technol., 2008, 37(6): 18
18 (张春艳, 李春天, 张 津. 热氧化处理对钛合金表面耐磨性能影响的研究 [J]. 表面技术, 2008, 37(6): 18)
19 Ahn S, Kim D, Kwon H. Analysis of repassivation kinetics of Ti based on the point defect model [J]. J. Electrochem. Soc., 2006, 153: B370
20 Pray H A, Schweickert C E, Minnich B H. Solubility of hydrogen, oxygen, nitrogen, and helium in water at elevated temperatures [J]. Ind. Eng. Chem., 1952, 44(5): 1146
[1] 禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[2] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[3] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[4] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[5] 谢文珍, 王震宇, 韩恩厚. 耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[6] 徐桂芝, 杜小泽, 胡晓, 宋洁. Pt涂层对TA4双极板在质子交换膜制氢电解池阳极环境中的电化学行为与界面导电性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1370-1376.
[7] 赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[8] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[9] 冯少宇, 周兆辉, 杨兰兰, 乔岩欣, 王金龙, 王福会. 海洋环境下TC4合金的电化学及磨损行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[10] 朱立洋, 陈俊全, 张欣欣, 董泽华, 蔡光义. 磁场对金属腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1117-1124.
[11] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[12] 王博, 安士忠, 郭俊卿, 纪运广, 李志强. 商用MB1MB8镁合金在NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[13] 马晓伟, 薛荣洁, 王涛涛, 杨亮, 刘珍光. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[14] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[15] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.