|
|
采用荧光纳米填料改性环氧涂层实现缺陷可视化 |
胡云飞1, 曹祥康1, 马小泽1, 潘景龙1, 蔡光义2( ), 董泽华1( ) |
1.华中科技大学化学院化工学院 武汉 430074 2.海军工程大学 电磁能技术全国重点实验室 武汉 430033 |
|
Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation |
HU Yunfei1, CAO Xiangkang1, MA Xiaoze1, PAN Jinglong1, CAI Guangyi2( ), DONG Zehua1( ) |
1.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2.National Key Laboratory of Science and Technology on Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China |
引用本文:
胡云飞, 曹祥康, 马小泽, 潘景龙, 蔡光义, 董泽华. 采用荧光纳米填料改性环氧涂层实现缺陷可视化[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
HU Yunfei,
CAO Xiangkang,
MA Xiaoze,
PAN Jinglong,
CAI Guangyi,
DONG Zehua.
Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 460-470.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.202
或
https://www.jcscp.org/CN/Y2023/V43/I3/460
|
1 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
|
2 |
Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
|
2 |
栾 浩, 孟凡帝, 刘 莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
|
3 |
Ma L W, Ren C H, Wang J K, et al. Self-reporting coatings for autonomous detection of coating damage and metal corrosion: A review [J]. Chem. Eng. J., 2021, 421: 127854
doi: 10.1016/j.cej.2020.127854
|
4 |
Zhang Z Y, Guo Z X, Zhou X, et al. Preparation and performance of epoxy resin coating with benzotriazole inhibitor charged nano-halloysite tubes. [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 705
|
4 |
张正阳, 郭子新, 周 欣 等. 纳米埃洛石装载苯并三氮唑自修复涂层研究 [J]. 中国腐蚀与防护学报, 2022, 42: 705
doi: 10.11902/1005.4537.2021.127
|
5 |
Liu T, Zhao H C, Zhang D W, et al. Ultrafast and high-efficient self-healing epoxy coatings with active multiple hydrogen bonds for corrosion protection [J]. Corros. Sci., 2021, 187: 109485
doi: 10.1016/j.corsci.2021.109485
|
6 |
Liu C B, Wu H, Qiang Y J, et al. Design of smart protective coatings with autonomous self-healing and early corrosion reporting properties [J]. Corros. Sci., 2021, 184: 109355
doi: 10.1016/j.corsci.2021.109355
|
7 |
Wang J K, Ma L W, Guo X, et al. Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating [J]. Chem. Eng. J., 2022, 433: 134515
doi: 10.1016/j.cej.2022.134515
|
8 |
Liu C B, Cheng L, Cui L Y, et al. Corrosion self-diagnosing and self-repairing polymeric coatings based on zeolitic imidazolate framework decorated hydroxyapatite nanocontainer on steel [J]. Chem. Eng. J., 2022, 431: 133476
doi: 10.1016/j.cej.2021.133476
|
9 |
Galvão T L P, Sousa I, Wilhelm M, et al. Improving the functionality and performance of AA2024 corrosion sensing coatings with nanocontainers [J]. Chem. Eng. J., 2018, 341: 526
doi: 10.1016/j.cej.2018.02.061
|
10 |
Zheng X, Wang Q, Li Y, et al. Fabrication of self-reactive microcapsules as color visual sensing for damage reporting [J]. J. Mater. Sci., 2020, 55: 8861
doi: 10.1007/s10853-020-04668-6
|
11 |
Li W L, Matthews C C, Yang K, et al. Autonomous indication of mechanical damage in polymeric coatings [J]. Adv. Mater., 2016, 28: 2189
doi: 10.1002/adma.201505214
|
12 |
Hu M H, Peil S, Xing Y W, et al. Monitoring crack appearance and healing in coatings with damage self-reporting nanocapsules [J]. Mater. Horiz., 2018, 5: 51
doi: 10.1039/C7MH00676D
|
13 |
Du X X, Tian H L, Wang H, et al. Research status and prospect of smart stress or structural damage self-sensing coatings [J]. Equip. Environ. Eng., 2021, 18(6): 77
|
13 |
杜修忻, 田浩亮, 王 浩 等. 智能应力或结构损伤自敏涂层研究现状及展望 [J]. 装备环境工程, 2021, 18(6): 77
|
14 |
Dhole G S, Gunasekaran G, Naik R, et al. Fluorescence based corrosion detecting epoxy coating [J]. Prog. Org. Coat., 2020, 138: 105425
|
15 |
Roshan S, Dariani A A S, Mokhtari J. Monitoring underlying epoxy-coated St-37 corrosion via 8-hydroxyquinoline as a fluorescent indicator [J]. Appl. Surf. Sci., 2018, 440: 880
doi: 10.1016/j.apsusc.2018.01.188
|
16 |
Lv J, Yue Q X, Ding R, et al. Intelligent anti-corrosion and corrosion detection coatings based on layered supramolecules intercalated by fluorescent off-on probes [J]. J. Taiwan Inst. Chem. Eng., 2021, 118: 309
doi: 10.1016/j.jtice.2020.12.032
|
17 |
Wang H, Fan Y, Tian L M, et al. Colorimetric/fluorescent dual channel sensitive coating for early detection of copper alloy corrosion [J]. Mater. Lett., 2020, 265: 127419
doi: 10.1016/j.matlet.2020.127419
|
18 |
Wang J P, Wang J K, Zhou Q, et al. Adaptive polymeric coatings with self-reporting and self-healing dual functions from porous core–shell nanostructures [J]. Macromol. Mater. Eng., 2018, 303: 1700616
doi: 10.1002/mame.v303.4
|
19 |
Zhou S K, Guo H L, Gu L. Research progress on design, preparation and application of fluorescent coatings [J]. Surf. Technol., 2021, 50(11): 30
|
19 |
周少魁, 郭宏磊, 顾 林. 荧光涂层的设计、制备与应用研究进展 [J]. 表面技术, 2021, 50(11): 30
|
20 |
Sousa I, Quevedo M C, Sushkova A, et al. Chitosan microspheres as carriers for pH-indicating species in corrosion sensing [J]. Macromol. Mater. Eng., 2020, 305: 1900662
doi: 10.1002/mame.v305.2
|
21 |
Calvino C, Weder C. Microcapsule-containing self-reporting polymers [J]. Small, 2018, 14: 1802489
doi: 10.1002/smll.v14.46
|
22 |
Dararatana N, Seidi F, Crespy D. pH-sensitive polymer conjugates for anticorrosion and corrosion sensing [J]. ACS Appl. Mater. Interfaces, 2018, 10: 20876
doi: 10.1021/acsami.8b05775
|
23 |
Devi V B, Arulmozhichelvan P, Murugakoothan P. Synthesis and characterization of Znq2 and Znq2:CTAB particles for optical applications [J]. Bull. Mater. Sci., 2017, 40: 1049
doi: 10.1007/s12034-017-1460-7
|
24 |
Sun Y Q, Lei Y L, Gao J, et al. Two-dimensional optical waveguiding and luminescence vapochromic properties of 8-hydroxyquinoline zinc (Znq2) hexagonal microsheets [J]. Chem. Commun., 2014, 50: 10812
doi: 10.1039/C4CC04794J
|
25 |
Rbaa M, Abousalem A S, Touhami M E, et al. Novel Cu (II) and Zn (II) complexes of 8-hydroxyquinoline derivatives as effective corrosion inhibitors for mild steel in 1.0 M HCl solution: Computer modeling supported experimental studies [J]. J. Mol. Liq., 2019, 290: 111243
doi: 10.1016/j.molliq.2019.111243
|
26 |
Wei Z X, Song H, Dai C H, et al. Tetramer bis-(8-hydroxyquinoline) zinc crystals prepared by physical vapor deposition method [J]. Cryst. Res. Technol., 2017, 52: 1700229
doi: 10.1002/crat.v52.12
|
27 |
Xu B S, Hao Y Y, Wang H, et al. The effects of crystal structure on optical absorption/photoluminescence of bis (8-hydroxyquinoline)zinc [J]. Solid State Commun., 2005, 136: 318
doi: 10.1016/j.ssc.2005.08.021
|
28 |
Painuly D, Mogha N K, Singhal R, et al. The modification in the photo-physical properties via transformation of synthetic dihydrated Znq2 to anhydrous (Znq2)4 tetramer by sublimation process [J]. Opt. Mater., 2018, 82: 175
doi: 10.1016/j.optmat.2018.04.044
|
29 |
Rohini N, Paul K, Luxami V. 8-hydroxyquinoline fluorophore for sensing of metal ions and anions [J]. Chem. Rec., 2020, 20: 1430
doi: 10.1002/tcr.v20.12
|
30 |
Wang F, Wang K J, Kong Q, et al. Recent studies focusing on the development of fluorescence probes for zinc ion [J]. Coord. Chem. Rev., 2021, 429: 213636
doi: 10.1016/j.ccr.2020.213636
|
31 |
Bryant D E, Greenfield D. The use of fluorescent probes for the detection of under-film corrosion [J]. Prog. Org. Coat., 2006, 57: 416
doi: 10.1016/j.porgcoat.2006.09.027
|
32 |
Wang L D, Zong Q F, Sun W, et al. Chemical modification of hydrotalcite coating for enhanced corrosion resistance [J]. Corros. Sci., 2015, 93: 256
doi: 10.1016/j.corsci.2015.01.033
|
33 |
Wang T, Jing L C, Zhu Q X, et al. Tannic acid modified graphene/CNT three-dimensional conductive network for preparing high-performance transparent flexible heaters [J]. J. Colloid Interface Sci., 2020, 577: 300
doi: 10.1016/j.jcis.2020.05.084
|
34 |
Wang J Q, Lou T J, Wang T, et al. Flexible electrothermal laminate films based on tannic acid-modified carbon nanotube/thermoplastic polyurethane composite [J]. Ind. Eng. Chem. Res., 2021, 60: 7844
doi: 10.1021/acs.iecr.1c00964
|
35 |
Liu S N, Wang C, Su W, et al. Water dispersed multi-walled carbon nanotubes modified by tannin acid [J]. Mater. Lett., 2014, 123: 44
doi: 10.1016/j.matlet.2014.02.075
|
36 |
Liu H H, Liu L L. Research progress of carbon nanotubes in anticorrosion coatings [J]. Polym. Bull., 2018, (8): 53
|
36 |
刘恒豪, 刘凌利. 碳纳米管在防腐涂料中的研究进展 [J]. 高分子通报, 2018, (8): 53
|
37 |
Hu H, He Y, Long Z H, et al. Synergistic effect of functional carbon nanotubes and graphene oxide on the anti-corrosion performance of epoxy coating [J]. Polym. Adv. Technol., 2017, 28: 754
doi: 10.1002/pat.v28.6
|
38 |
Cai G Y, Hou J, Jiang D, et al. Polydopamine-wrapped carbon nanotubes to improve the corrosion barrier of polyurethane coating [J]. RSC Adv., 2018, 8: 23727
doi: 10.1039/C8RA03267J
|
39 |
Xiao S, Cao X K, Dong Z H, et al. A pH-responsive cerium-imidazole decorated ZIF-8 to achieve self-healing barrier property for epoxy coating on Al alloy by controlled release [J]. Prog. Org. Coat., 2022, 163: 106640
|
40 |
Zhang J, Liu Z Q, Feng T, et al. Effect of carbon nanotube on properties of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 254
|
40 |
张 娟, 刘自强, 冯 涛 等. 碳纳米管含量对环氧树脂涂层性能的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 254
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|