Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 460-470     CSTR: 32134.14.1005.4537.2022.202      DOI: 10.11902/1005.4537.2022.202
  研究报告 本期目录 | 过刊浏览 |
采用荧光纳米填料改性环氧涂层实现缺陷可视化
胡云飞1, 曹祥康1, 马小泽1, 潘景龙1, 蔡光义2(), 董泽华1()
1.华中科技大学化学院化工学院 武汉 430074
2.海军工程大学 电磁能技术全国重点实验室 武汉 430033
Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation
HU Yunfei1, CAO Xiangkang1, MA Xiaoze1, PAN Jinglong1, CAI Guangyi2(), DONG Zehua1()
1.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.National Key Laboratory of Science and Technology on Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China
全文: PDF(16681 KB)   HTML
摘要: 

通过水热法制备了8-羟基喹啉锌 (ZnQ2) 荧光耐蚀双功能纳米填料,并添加到环氧树脂中制备荧光指示底漆;以单宁酸修饰的碳纳米管 (TA-CNTs) 作为填料制备高阻隔性环氧面漆,最终合成具有荧光缺陷指示与高耐蚀的双功能涂层。利用SEM、FT-IR、XRD、荧光光谱等验证了荧光纳米材料的成功合成;通过电化学测试和盐雾实验对该复合涂层的耐蚀性进行了评价,并通过荧光显微镜对复合改性涂层的缺陷指示功能进行了验证。结果表明:合成的ZnQ2纳米填料具有优异的荧光指示和缓蚀作用,复合涂层经30 d的中性盐雾实验后,其低频阻抗|Z|0.01 Hz仍保持在2.95×109 Ω·cm2,表现出了优异的耐蚀性。当复合涂层发生机械损伤时,涂层破损处在365 nm紫外照射下可发生强烈荧光。且经过盐雾实验10 d后,涂层缺陷处的荧光依旧保持良好,表明该荧光涂层有利于对涂层缺陷的快速诊断和维修指示。

关键词 荧光缺陷指示双功能涂层耐蚀    
Abstract

Zinc 8-hydroxyquinoline (ZnQ2) bifunctional nanofiller with fluorescent and inhibitive properties was prepared by hydrothermal method, which was added into epoxy resin as a fluorescent indicative primer. Tannic acid-wrapped carbon nanotubes (TA-CNTs) was filled into epoxy resin topcoat to achieve high corrosion resistant. Accordingly, the obtained composite coatings both featured dual-function properties. SEM, FT-IR, XRD, and fluorescence spectroscopy were employed to verify the successful synthesis of fluorescent nanofiller. Corrosion resistance of the composite coatings was confirmed through salt spraying and electrochemical tests. Fluorescence microscopy was applied to evidence the self-indicator of defects on the composite coatings. The results show that the synthesized ZnQ2 nanofiller is an excellent fluorescent indicator and corrosion inhibitor. After 30 d salt spraying test, the low-frequency impedance |Z|0.01 Hz of the composite coating sustains above 2.95×109 Ω·cm2, indicative of high corrosion resistance. When the coating was damaged mechanically, a strong fluorescence emitted under 365 nm under ultraviolet irradiation at the defective areas. Moreover, the fluorescence emitting capability present favorable durability even after 10 d salt spraying test, which would provide promising indication for rapid defect diagnosis and maintenance.

Key wordsfluorescence    defect indication    dual function    coating    corrosion resistance
收稿日期: 2022-06-21      32134.14.1005.4537.2022.202
ZTFLH:  TG174  
基金资助:国家自然科学基金(51771079);国家自然科学基金(52001127)
通讯作者: 董泽华,E-mail: zhdong@hust.edu.cn,研究方向为金属腐蚀与防护以及腐蚀监测方法等;
蔡光义,E-mail: caiguangyi@hust.edu.cn,研究方向为涂层老化机制及功能改性
Corresponding author: DONG Zehua, E-mail: zhdong@hust.edu.cn;
CAI Guangyi, E-mail: caiguangyi@hust.edu.cn
作者简介: 胡云飞,男,1997年生,硕士生

引用本文:

胡云飞, 曹祥康, 马小泽, 潘景龙, 蔡光义, 董泽华. 采用荧光纳米填料改性环氧涂层实现缺陷可视化[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 460-470.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.202      或      https://www.jcscp.org/CN/Y2023/V43/I3/460

图1  荧光环氧复合涂层的制备流程
图2  ZnQ2纳米粒子的SEM形貌及EDS谱
图3  ZnQ2颗粒样品的红外光谱,XRD谱及XPS谱
图4  ZnQ2样品的荧光光强及365 nm紫外光照射的荧光图,不同添加量的ZnQ2添加到环氧涂层后的荧光光强及环氧底漆的附着力曲线
图5  铝合金浸泡在不含和含有ZnQ2的3.5%NaCl溶液中的Bode图及宏观腐蚀形貌
图6  铝合金分别浸泡在不含和含有ZnQ2的3.5%NaCl溶液浸泡3 d后的表面SEM像
图7  CNTs和TA-CNTs的FT-IR及CNTs和TA-CNTs的XRD
图8  CNTs和TA-CNTs在乙醇中不同静置时间后的沉降示意图
图9  EP涂层,ZnQ2@EP涂层,ZnQ2-CNTs@EP涂层的SEM图
图10  不同涂层经盐雾老化后的EIS图,等效电路及涂层低频阻抗|Z|0.01 Hz随盐雾时间的变化曲线
图11  划伤涂层经不同盐雾时间后的宏观形貌
图12  不同涂层在紫外光照射下和ZnQ2+CNTs@EP复合涂层经不同时间盐雾老化后的荧光照片及盐雾老化前后的荧光耐久性形貌
1 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
2 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
2 栾 浩, 孟凡帝, 刘 莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
3 Ma L W, Ren C H, Wang J K, et al. Self-reporting coatings for autonomous detection of coating damage and metal corrosion: A review [J]. Chem. Eng. J., 2021, 421: 127854
doi: 10.1016/j.cej.2020.127854
4 Zhang Z Y, Guo Z X, Zhou X, et al. Preparation and performance of epoxy resin coating with benzotriazole inhibitor charged nano-halloysite tubes. [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 705
4 张正阳, 郭子新, 周 欣 等. 纳米埃洛石装载苯并三氮唑自修复涂层研究 [J]. 中国腐蚀与防护学报, 2022, 42: 705
doi: 10.11902/1005.4537.2021.127
5 Liu T, Zhao H C, Zhang D W, et al. Ultrafast and high-efficient self-healing epoxy coatings with active multiple hydrogen bonds for corrosion protection [J]. Corros. Sci., 2021, 187: 109485
doi: 10.1016/j.corsci.2021.109485
6 Liu C B, Wu H, Qiang Y J, et al. Design of smart protective coatings with autonomous self-healing and early corrosion reporting properties [J]. Corros. Sci., 2021, 184: 109355
doi: 10.1016/j.corsci.2021.109355
7 Wang J K, Ma L W, Guo X, et al. Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating [J]. Chem. Eng. J., 2022, 433: 134515
doi: 10.1016/j.cej.2022.134515
8 Liu C B, Cheng L, Cui L Y, et al. Corrosion self-diagnosing and self-repairing polymeric coatings based on zeolitic imidazolate framework decorated hydroxyapatite nanocontainer on steel [J]. Chem. Eng. J., 2022, 431: 133476
doi: 10.1016/j.cej.2021.133476
9 Galvão T L P, Sousa I, Wilhelm M, et al. Improving the functionality and performance of AA2024 corrosion sensing coatings with nanocontainers [J]. Chem. Eng. J., 2018, 341: 526
doi: 10.1016/j.cej.2018.02.061
10 Zheng X, Wang Q, Li Y, et al. Fabrication of self-reactive microcapsules as color visual sensing for damage reporting [J]. J. Mater. Sci., 2020, 55: 8861
doi: 10.1007/s10853-020-04668-6
11 Li W L, Matthews C C, Yang K, et al. Autonomous indication of mechanical damage in polymeric coatings [J]. Adv. Mater., 2016, 28: 2189
doi: 10.1002/adma.201505214
12 Hu M H, Peil S, Xing Y W, et al. Monitoring crack appearance and healing in coatings with damage self-reporting nanocapsules [J]. Mater. Horiz., 2018, 5: 51
doi: 10.1039/C7MH00676D
13 Du X X, Tian H L, Wang H, et al. Research status and prospect of smart stress or structural damage self-sensing coatings [J]. Equip. Environ. Eng., 2021, 18(6): 77
13 杜修忻, 田浩亮, 王 浩 等. 智能应力或结构损伤自敏涂层研究现状及展望 [J]. 装备环境工程, 2021, 18(6): 77
14 Dhole G S, Gunasekaran G, Naik R, et al. Fluorescence based corrosion detecting epoxy coating [J]. Prog. Org. Coat., 2020, 138: 105425
15 Roshan S, Dariani A A S, Mokhtari J. Monitoring underlying epoxy-coated St-37 corrosion via 8-hydroxyquinoline as a fluorescent indicator [J]. Appl. Surf. Sci., 2018, 440: 880
doi: 10.1016/j.apsusc.2018.01.188
16 Lv J, Yue Q X, Ding R, et al. Intelligent anti-corrosion and corrosion detection coatings based on layered supramolecules intercalated by fluorescent off-on probes [J]. J. Taiwan Inst. Chem. Eng., 2021, 118: 309
doi: 10.1016/j.jtice.2020.12.032
17 Wang H, Fan Y, Tian L M, et al. Colorimetric/fluorescent dual channel sensitive coating for early detection of copper alloy corrosion [J]. Mater. Lett., 2020, 265: 127419
doi: 10.1016/j.matlet.2020.127419
18 Wang J P, Wang J K, Zhou Q, et al. Adaptive polymeric coatings with self-reporting and self-healing dual functions from porous core–shell nanostructures [J]. Macromol. Mater. Eng., 2018, 303: 1700616
doi: 10.1002/mame.v303.4
19 Zhou S K, Guo H L, Gu L. Research progress on design, preparation and application of fluorescent coatings [J]. Surf. Technol., 2021, 50(11): 30
19 周少魁, 郭宏磊, 顾 林. 荧光涂层的设计、制备与应用研究进展 [J]. 表面技术, 2021, 50(11): 30
20 Sousa I, Quevedo M C, Sushkova A, et al. Chitosan microspheres as carriers for pH-indicating species in corrosion sensing [J]. Macromol. Mater. Eng., 2020, 305: 1900662
doi: 10.1002/mame.v305.2
21 Calvino C, Weder C. Microcapsule-containing self-reporting polymers [J]. Small, 2018, 14: 1802489
doi: 10.1002/smll.v14.46
22 Dararatana N, Seidi F, Crespy D. pH-sensitive polymer conjugates for anticorrosion and corrosion sensing [J]. ACS Appl. Mater. Interfaces, 2018, 10: 20876
doi: 10.1021/acsami.8b05775
23 Devi V B, Arulmozhichelvan P, Murugakoothan P. Synthesis and characterization of Znq2 and Znq2:CTAB particles for optical applications [J]. Bull. Mater. Sci., 2017, 40: 1049
doi: 10.1007/s12034-017-1460-7
24 Sun Y Q, Lei Y L, Gao J, et al. Two-dimensional optical waveguiding and luminescence vapochromic properties of 8-hydroxyquinoline zinc (Znq2) hexagonal microsheets [J]. Chem. Commun., 2014, 50: 10812
doi: 10.1039/C4CC04794J
25 Rbaa M, Abousalem A S, Touhami M E, et al. Novel Cu (II) and Zn (II) complexes of 8-hydroxyquinoline derivatives as effective corrosion inhibitors for mild steel in 1.0 M HCl solution: Computer modeling supported experimental studies [J]. J. Mol. Liq., 2019, 290: 111243
doi: 10.1016/j.molliq.2019.111243
26 Wei Z X, Song H, Dai C H, et al. Tetramer bis-(8-hydroxyquinoline) zinc crystals prepared by physical vapor deposition method [J]. Cryst. Res. Technol., 2017, 52: 1700229
doi: 10.1002/crat.v52.12
27 Xu B S, Hao Y Y, Wang H, et al. The effects of crystal structure on optical absorption/photoluminescence of bis (8-hydroxyquinoline)zinc [J]. Solid State Commun., 2005, 136: 318
doi: 10.1016/j.ssc.2005.08.021
28 Painuly D, Mogha N K, Singhal R, et al. The modification in the photo-physical properties via transformation of synthetic dihydrated Znq2 to anhydrous (Znq2)4 tetramer by sublimation process [J]. Opt. Mater., 2018, 82: 175
doi: 10.1016/j.optmat.2018.04.044
29 Rohini N, Paul K, Luxami V. 8-hydroxyquinoline fluorophore for sensing of metal ions and anions [J]. Chem. Rec., 2020, 20: 1430
doi: 10.1002/tcr.v20.12
30 Wang F, Wang K J, Kong Q, et al. Recent studies focusing on the development of fluorescence probes for zinc ion [J]. Coord. Chem. Rev., 2021, 429: 213636
doi: 10.1016/j.ccr.2020.213636
31 Bryant D E, Greenfield D. The use of fluorescent probes for the detection of under-film corrosion [J]. Prog. Org. Coat., 2006, 57: 416
doi: 10.1016/j.porgcoat.2006.09.027
32 Wang L D, Zong Q F, Sun W, et al. Chemical modification of hydrotalcite coating for enhanced corrosion resistance [J]. Corros. Sci., 2015, 93: 256
doi: 10.1016/j.corsci.2015.01.033
33 Wang T, Jing L C, Zhu Q X, et al. Tannic acid modified graphene/CNT three-dimensional conductive network for preparing high-performance transparent flexible heaters [J]. J. Colloid Interface Sci., 2020, 577: 300
doi: 10.1016/j.jcis.2020.05.084
34 Wang J Q, Lou T J, Wang T, et al. Flexible electrothermal laminate films based on tannic acid-modified carbon nanotube/thermoplastic polyurethane composite [J]. Ind. Eng. Chem. Res., 2021, 60: 7844
doi: 10.1021/acs.iecr.1c00964
35 Liu S N, Wang C, Su W, et al. Water dispersed multi-walled carbon nanotubes modified by tannin acid [J]. Mater. Lett., 2014, 123: 44
doi: 10.1016/j.matlet.2014.02.075
36 Liu H H, Liu L L. Research progress of carbon nanotubes in anticorrosion coatings [J]. Polym. Bull., 2018, (8): 53
36 刘恒豪, 刘凌利. 碳纳米管在防腐涂料中的研究进展 [J]. 高分子通报, 2018, (8): 53
37 Hu H, He Y, Long Z H, et al. Synergistic effect of functional carbon nanotubes and graphene oxide on the anti-corrosion performance of epoxy coating [J]. Polym. Adv. Technol., 2017, 28: 754
doi: 10.1002/pat.v28.6
38 Cai G Y, Hou J, Jiang D, et al. Polydopamine-wrapped carbon nanotubes to improve the corrosion barrier of polyurethane coating [J]. RSC Adv., 2018, 8: 23727
doi: 10.1039/C8RA03267J
39 Xiao S, Cao X K, Dong Z H, et al. A pH-responsive cerium-imidazole decorated ZIF-8 to achieve self-healing barrier property for epoxy coating on Al alloy by controlled release [J]. Prog. Org. Coat., 2022, 163: 106640
40 Zhang J, Liu Z Q, Feng T, et al. Effect of carbon nanotube on properties of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 254
40 张 娟, 刘自强, 冯 涛 等. 碳纳米管含量对环氧树脂涂层性能的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 254
[1] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[3] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[4] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[5] 张凯丽, 都俐俐, 谭军, 刘祥周, 马骥, 邱萍. 珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[6] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[7] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[8] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[9] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[10] 李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[11] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[12] 袁磊, 谢新, 陈明辉, 李烽杰, 王福会. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[13] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[14] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[15] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.