Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 452-459     CSTR: 32134.14.1005.4537.2022.237      DOI: 10.11902/1005.4537.2022.237
  综合评述 本期目录 | 过刊浏览 |
垃圾焚烧炉受热面防护技术的研究进展
曲作鹏1(), 张贝贝1, 谢广校1, 杨宇曦1, 王永田1, 田欣利2, 王海军2
1.华北电力大学 生物质发电成套设备国家工程实验室 北京 102206
2.陆军装甲兵学院 装备再制造技术国防科技重点实验室 北京 100072
Research Progress on Protection Technology for Waste Incinerator Heating Surfaces
QU Zuopeng1(), ZHANG Beibei1, XIE Guangxiao1, YANG Yuxi1, WANG Yongtian1, TIAN Xinli2, WANG Haijun2
1.National Engineering Laboratory of Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China
2.National Defense Science and Technology Key Laboratory of Equipment Remanufacturing Technology, Army Armoured Corps College, Beijing 100072, China
全文: PDF(611 KB)   HTML
摘要: 

在简介垃圾焚烧锅炉严峻腐蚀工况的基础上,对垃圾焚烧炉受热面的腐蚀机理进行探讨,综述了近几十年来垃圾焚烧发电锅炉受热面防护技术的研究进展,并对未来的研究方向进行了展望。

关键词 高温烟气腐蚀热喷涂涂层熔覆锅炉管材垃圾焚烧炉金属陶瓷    
Abstract

Waste-to-energy has become an important means to enter a low-carbon, environmentally friendly society. During the operation of waste boilers, high-temperature flue gas corrosion occurs on their key components such as water-cooled walls and superheaters. In addition, the steam temperature for power plants are also increasing significantly, which may further deteriorate the corrosion and erosion conditions for the boiler heating surface. In this severe corrosive environment, it is very important that on the heated surfaces a dense, uniform and tough coating should be applied, as well as a protective oxide scale should form on their surface to ensure the stable operation of the waste incinerator. As people continue to explore, significant progress has been made in materials and coatings with excellent corrosion resistance, such as alloy 625 overlay welding, induction fusion coating of NiCrBSi, laser fusion coating of cermets, and thermal spraying composite coatings etc. In this paper, on the basis of the introduction of the severe corrosion conditions of waste incineration boilers, the corrosion mechanism of the heating surface of waste incinerators is discussed, the research progress of the protection technology for the heating surface of waste-to-energy boilers in recent decades is reviewed, and the future research direction is prospected.

Key wordshigh temperature flue gas corrosion    thermal spray coating    cladding    boiler tubes    waste incinerators    cermets refractories
收稿日期: 2022-07-19      32134.14.1005.4537.2022.237
ZTFLH:  TG174  
通讯作者: 曲作鹏,E-mail:z.qu@ncepu.edu.cn,研究方向为表面工程、固废资源化
Corresponding author: QU Zuopeng, E-mail: z.qu@ncepu.edu.cn
作者简介: 曲作鹏,男,1980年生,博士,副教授

引用本文:

曲作鹏, 张贝贝, 谢广校, 杨宇曦, 王永田, 田欣利, 王海军. 垃圾焚烧炉受热面防护技术的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(3): 452-459.
QU Zuopeng, ZHANG Beibei, XIE Guangxiao, YANG Yuxi, WANG Yongtian, TIAN Xinli, WANG Haijun. Research Progress on Protection Technology for Waste Incinerator Heating Surfaces. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 452-459.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.237      或      https://www.jcscp.org/CN/Y2023/V43/I3/452

Tube No.MethodPowderSubstrateBefore1 a7 a
1Detonation50Ni-50Cr6.36.856.836.83
250Ni-50Cr+Cr6.46.916.866.83
3Detonation+Are50Ni-50Cr+Al6.57.547.386.99
4DetonationCoCrAlY6.36.656.616.53
5Plasma50Ni-50Cr6.57.727.147.00
6HVOF50Ni-50Cr6.26.646.556.53
780Ni-20Cr6.67.177.026.98
8C-Steel-6.4-6.135.66
表1  实际垃圾焚烧厂中水冷壁管使用7 a后的腐蚀数据[21]
MatericalPositionTemperature / ℃CoatingCorrosion environmentLife time of coatings / a
GasSteamCorrosivityEffect of Soot BlowerPosition affected by SBPosition not affected by SB
310HcbN2ry SH steam outlet488450YSZ/625StrongWeak>3≥1.5
YSZ/NiCrBSi>3≥1.5
Cr3C2·NiCr<0.3<0.3
Alloy625Tertiary SH steam outlet510500YSZ/625WeakMiddle>3-
YSZ/NiCrBSi>3-
Tertiary SH steam inlet621445YSZ/625StrongStrong>3≥1.5
YSZ/NiCrBSi>3≥1.5
表2  Ni基合金/YSZ涂层1.3 a后的寿命预测结果[39]
1 Kawahara Y. An overview on corrosion-resistant coating technologies in biomass/waste-to-energy plants in recent decades [J]. Coatings, 2016, 6: 34
doi: 10.3390/coatings6030034
2 Qu Z P, Zhong R G, Wang L, et al. Research progress on high temperature corrosion mechanism of waste incineration power generation boiler [J]. IOP Conf. Ser.: Earth Environ. Sci., 2020, 598: 012008
3 Sadeghi E, Markocsan N, Joshi S. Advances in corrosion-resistant thermal spray coatings for renewable energy power plants. Part I: Effect of composition and microstructure [J]. J. Therm. Spray Technol., 2019, 28: 1749
doi: 10.1007/s11666-019-00938-1
4 Phongphiphat A, Ryu C, Yang Y B, et al. Investigation into high-temperature corrosion in a large-scale municipal waste-to-energy plant [J]. Corros. Sci., 2010, 52: 3861
doi: 10.1016/j.corsci.2010.07.032
5 Singh S, Goyal K, Bhatia R. A review on protection of boiler tube steels with thermal spray coatings from hot corrosion [J]. Mater. Today, 2022, 56: 379
6 Sorell G. The role of chlorine in high temperature corrosion in waste-to-energy plants [J]. Mater. High Temp., 1997, 14: 207
doi: 10.1080/09603409.1997.11689546
7 Kawahara Y. Application of high-temperature corrosion-resistant ceramics and coatings under aggressive corrosion environment in waste-to-energy boilers [A]. Somiya S. Handbook of Advanced Ceramics [M]. 2nd ed. Oxford: Academic Press, 2013: 807
8 Sadeghi E, Markocsan N, Joshi S. Advances in corrosion-resistant thermal spray coatings for renewable energy power plants: Part II—Effect of environment and outlook [J]. J. Therm. Spray Technol., 2019, 28: 1789
doi: 10.1007/s11666-019-00939-0
9 Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700 ℃ [J]. Corros. Sci., 2000, 42: 1093
doi: 10.1016/S0010-938X(99)00142-0
10 Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
11 Clancy M, Bettles C J, Stuart A, et al. The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: A review [J]. Hydrometallurgy, 2013, 131/132: 144
12 Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment—solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
doi: 10.1016/S0010-938X(01)00059-2
13 Folkeson N, Jonsson T, Halvarsson M, et al. The influence of small amounts of KCl (s) on the high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 and 500 ℃ [J]. Mater. Corros., 2011, 62: 606
14 Karlsson S, Pettersson J, Johansson L G, et al. Alkali induced high temperature corrosion of stainless steel: The influence of NaCl, KCl and CaCl2 [J]. Oxid. Met., 2012, 78: 83
doi: 10.1007/s11085-012-9293-7
15 Kawahara Y. Recent trends and future subjects on high temperature corrosion prevention technologies in high efficiency waste-to-energy plants [J]. Zairyo-to-Kankyo, 2005, 54: 183
doi: 10.3323/jcorr1991.54.183
16 Sawaragi Y. Recent research and development trends of heat resistant steel tubes and pipes for high temperature application [J]. J. High Press. Inst. Jpn., 1991, 29: 151
17 Wang S L. Application analysis of refractory materials in grate type refuse incinerator [J]. Leather Manuf. Environ. Technol., 2022, 3(1): 133
17 王顺利. 炉排式垃圾焚烧炉耐火材料应用分析 [J]. 皮革制作与环保科技, 2022, 3(1): 133
18 Zhan H S, Cai B L, Wang F Y, et al. Application status of refractory materials for grate waste incinerators in China [J]. Refractories, 2020, 54: 271
18 占华生, 蔡斌利, 王峰裕 等. 我国炉排式垃圾焚烧炉耐火材料应用现状 [J]. 耐火材料, 2020, 54: 271
19 Ueda M, Maruyama T. High temperature steam oxidation of high Cr ferritic steels [J]. Zairyo-to-Kankyo, 2005, 54: 175
doi: 10.3323/jcorr1991.54.175
20 Ohoba S, Yoshikawa Y, Sasaki K, et al. Apprication and life-time evaluation of metal spray coatings for fire-side corrosion of boiler waterwall [A]. International Symposium on Gas Cleaning at High Temperatures [C]. 2010, Taiyuan
21 Yamada K, Tomono Y, Morimoto J, et al. Hot corrosion behavior of boiler tube materials in refuse incineration environment [J]. Vacuum, 2002, 65: 533
doi: 10.1016/S0042-207X(01)00468-7
22 Matsubara Y, Sochi Y, Tanabe M, et al. Advanced coatings on furnace wall tubes [J]. J. Therm. Spray Technol., 2007, 16: 195
doi: 10.1007/s11666-007-9030-y
23 Han B Y, Chu J J, Zhou K B, et al. Research on present situation of quality control and performance optimization of thermal spraying coating based on remelting technology [J]. China Mech. Eng., 2022, 33: 727
23 韩冰源, 楚佳杰, 周克兵 等. 基于重熔技术的热喷涂涂层质量调控与性能优化现状研究 [J]. 中国机械工程, 2022, 33: 727
24 Oksa M. Nickel- and iron-based HVOF thermal spray coatings for high temperature corrosion protection in biomass-fired power plant boilers [J]. VTT Science, 2015
25 Vardelle A, Moreau C, Akedo J, et al. The 2016 thermal spray roadmap [J]. J. Therm. Spray Technol., 2016, 25: 1376
doi: 10.1007/s11666-016-0473-x
26 Singh H, Sidhu T S, Kalsi S B S. Behaviour of cold sprayed superalloy in incinerator at 900 ℃ [J]. Surf. Eng., 2015, 31: 846
doi: 10.1179/1743294414Y.0000000390
27 Singh H, Kalsi S B S, Sidhu T S, et al. Microstructure of Ni-Cr-based coating for corrosive conditions [J]. J. Therm. Spray Technol., 2019, 28: 1420
doi: 10.1007/s11666-019-00936-3
28 Sun L Q. Wearing mode and lifespan evaluation of water wall of circulating fluidized bed boiler [J]. China Spec. Equip. Saf., 2014, 30(8): 37
28 孙连启. 循环流化床锅炉水冷壁的磨损形式和寿命评估 [J]. 中国特种设备安全, 2014, 30(8): 37
29 Sun H H, Liu A G, Meng F L. Microstructure and properties of the membrane water-walls of boiler with Inconel 625 alloy surfacing layer [J]. Trans. Mater. Heat Treat., 2013, 34(S2): 96
29 孙焕焕, 刘爱国, 孟凡玲. 堆焊Inconel625合金的锅炉膜式水冷壁组织和性能 [J]. 材料热处理学报, 2013, 34(S2): 96
30 Qu Z P, Zhong R G, Wang L, et al. Research progress on high-temperature corrosion treatment schemes of waste to energy boilers [J]. China Surf. Eng., 2020, 33(3): 50
30 曲作鹏, 钟日钢, 王 磊 等. 垃圾焚烧发电锅炉高温腐蚀治理的研究进展 [J]. 中国表面工程, 2020, 33(3): 50
31 Heath A G. Extending the lifetime of boiler tubes under severe conditions with advanced coatings in waste and coal fired power plants
32 Kawahara Y. Evaluation of high-temperature corrosion life using temperature gradient corrosion test with thermal cycle component in waste combustion environments [J]. Mater. Corros., 2006, 57: 60
doi: 10.1002/(ISSN)1521-4176
33 Kawahara Y. High temperature corrosion mechanisms and effect of alloying elements for materials used in waste incineration environment [J]. Corros. Sci., 2002, 44: 223
doi: 10.1016/S0010-938X(01)00058-0
34 Guevara C, Herminia S. Statistical lifetime modeling of FeNiCr alloys for high temperature corrosion in waste to energy plants and metal dusting in syngas production plants [Z]. 2016
35 Viklund P, Hjörnhede A, Henderson P, et al. Corrosion of superheater materials in a waste-to-energy plant [J]. Fuel Process. Technol., 2013, 105: 106
doi: 10.1016/j.fuproc.2011.06.017
36 Kawahara Y. Application of high temperature corrosion-resistant materials and coatings under severe corrosive environment in waste-to-energy boilers [J]. J. Therm. Spray Technol., 2007, 16: 202
doi: 10.1007/s11666-006-9012-5
37 Fukuda Y, Kawahara Y. Evaluation of corrosion resistance of waste incinerator superheater tubes coated by high velocity thermal spray [J]. J. Jpn. Inst. Met., 2002, 66: 563
doi: 10.2320/jinstmet1952.66.6_563
38 Kawahara Y, Orita N, Takahashi K, et al. Demonstration test of new corrosion-resistant boiler tube materials in high efficiency waste incineration plant [J]. Tetsu-to-Hagane, 2001, 87: 544
doi: 10.2355/tetsutohagane1955.87.8_544
39 Kawahara Y, Nakamura M, Tsuboi H, et al. Evaluation of new corrosion-resistant superheater tubing in high-efficiency waste-to-energy plants [J]. Corrosion, 1998, 54: 576
doi: 10.5006/1.3284886
40 Tejero-Martin D, Rad M R, McDonald A, et al. Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings [J]. J. Therm. Spray Technol., 2019, 28: 598
doi: 10.1007/s11666-019-00857-1
41 Fantini V. Laser cladding: A new technology for corrosion and erosion protection of boiler tubes [A]. Thermal Spray 2007: Proceedings from the International Thermal Spray [C]. Beijing: ASM Thermal Spray Society, 2007
42 Liu S, Liu Z D, Wang Y T, et al. A comparative study on the high temperature corrosion of TP347H stainless steel, C22 alloy and laser-cladding C22 coating in molten chloride salts [J]. Corros. Sci., 2014, 83: 396
doi: 10.1016/j.corsci.2014.03.012
[1] 吴多利, 吴昊天, 孙珲, 史建军, 魏新龙, 张超. 激光熔覆高温防护涂层研究现状及发展方向[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[2] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[3] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[4] 熊义, 刘光明, 占阜元, 毛晓飞, 罗钦, 洪嘉, 倪进飞, 刘永强. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[5] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[6] 斯松华 . 激光功率对WCp / Ni基金属陶瓷涂层的组织与磨损性能的影响[J]. 中国腐蚀与防护学报, 2004, 24(3): 183-187 .
[7] 王昆林;张庆波;魏兴国;朱允明. La_2O_3对镍基合金激光熔覆层耐蚀性的影响[J]. 中国腐蚀与防护学报, 1998, 18(3): 237-240.