|
|
垃圾焚烧炉受热面防护技术的研究进展 |
曲作鹏1( ), 张贝贝1, 谢广校1, 杨宇曦1, 王永田1, 田欣利2, 王海军2 |
1.华北电力大学 生物质发电成套设备国家工程实验室 北京 102206 2.陆军装甲兵学院 装备再制造技术国防科技重点实验室 北京 100072 |
|
Research Progress on Protection Technology for Waste Incinerator Heating Surfaces |
QU Zuopeng1( ), ZHANG Beibei1, XIE Guangxiao1, YANG Yuxi1, WANG Yongtian1, TIAN Xinli2, WANG Haijun2 |
1.National Engineering Laboratory of Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China 2.National Defense Science and Technology Key Laboratory of Equipment Remanufacturing Technology, Army Armoured Corps College, Beijing 100072, China |
引用本文:
曲作鹏, 张贝贝, 谢广校, 杨宇曦, 王永田, 田欣利, 王海军. 垃圾焚烧炉受热面防护技术的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(3): 452-459.
QU Zuopeng,
ZHANG Beibei,
XIE Guangxiao,
YANG Yuxi,
WANG Yongtian,
TIAN Xinli,
WANG Haijun.
Research Progress on Protection Technology for Waste Incinerator Heating Surfaces. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 452-459.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.237
或
https://www.jcscp.org/CN/Y2023/V43/I3/452
|
1 |
Kawahara Y. An overview on corrosion-resistant coating technologies in biomass/waste-to-energy plants in recent decades [J]. Coatings, 2016, 6: 34
doi: 10.3390/coatings6030034
|
2 |
Qu Z P, Zhong R G, Wang L, et al. Research progress on high temperature corrosion mechanism of waste incineration power generation boiler [J]. IOP Conf. Ser.: Earth Environ. Sci., 2020, 598: 012008
|
3 |
Sadeghi E, Markocsan N, Joshi S. Advances in corrosion-resistant thermal spray coatings for renewable energy power plants. Part I: Effect of composition and microstructure [J]. J. Therm. Spray Technol., 2019, 28: 1749
doi: 10.1007/s11666-019-00938-1
|
4 |
Phongphiphat A, Ryu C, Yang Y B, et al. Investigation into high-temperature corrosion in a large-scale municipal waste-to-energy plant [J]. Corros. Sci., 2010, 52: 3861
doi: 10.1016/j.corsci.2010.07.032
|
5 |
Singh S, Goyal K, Bhatia R. A review on protection of boiler tube steels with thermal spray coatings from hot corrosion [J]. Mater. Today, 2022, 56: 379
|
6 |
Sorell G. The role of chlorine in high temperature corrosion in waste-to-energy plants [J]. Mater. High Temp., 1997, 14: 207
doi: 10.1080/09603409.1997.11689546
|
7 |
Kawahara Y. Application of high-temperature corrosion-resistant ceramics and coatings under aggressive corrosion environment in waste-to-energy boilers [A]. Somiya S. Handbook of Advanced Ceramics [M]. 2nd ed. Oxford: Academic Press, 2013: 807
|
8 |
Sadeghi E, Markocsan N, Joshi S. Advances in corrosion-resistant thermal spray coatings for renewable energy power plants: Part II—Effect of environment and outlook [J]. J. Therm. Spray Technol., 2019, 28: 1789
doi: 10.1007/s11666-019-00939-0
|
9 |
Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700 ℃ [J]. Corros. Sci., 2000, 42: 1093
doi: 10.1016/S0010-938X(99)00142-0
|
10 |
Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
|
11 |
Clancy M, Bettles C J, Stuart A, et al. The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: A review [J]. Hydrometallurgy, 2013, 131/132: 144
|
12 |
Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment—solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
doi: 10.1016/S0010-938X(01)00059-2
|
13 |
Folkeson N, Jonsson T, Halvarsson M, et al. The influence of small amounts of KCl (s) on the high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 and 500 ℃ [J]. Mater. Corros., 2011, 62: 606
|
14 |
Karlsson S, Pettersson J, Johansson L G, et al. Alkali induced high temperature corrosion of stainless steel: The influence of NaCl, KCl and CaCl2 [J]. Oxid. Met., 2012, 78: 83
doi: 10.1007/s11085-012-9293-7
|
15 |
Kawahara Y. Recent trends and future subjects on high temperature corrosion prevention technologies in high efficiency waste-to-energy plants [J]. Zairyo-to-Kankyo, 2005, 54: 183
doi: 10.3323/jcorr1991.54.183
|
16 |
Sawaragi Y. Recent research and development trends of heat resistant steel tubes and pipes for high temperature application [J]. J. High Press. Inst. Jpn., 1991, 29: 151
|
17 |
Wang S L. Application analysis of refractory materials in grate type refuse incinerator [J]. Leather Manuf. Environ. Technol., 2022, 3(1): 133
|
17 |
王顺利. 炉排式垃圾焚烧炉耐火材料应用分析 [J]. 皮革制作与环保科技, 2022, 3(1): 133
|
18 |
Zhan H S, Cai B L, Wang F Y, et al. Application status of refractory materials for grate waste incinerators in China [J]. Refractories, 2020, 54: 271
|
18 |
占华生, 蔡斌利, 王峰裕 等. 我国炉排式垃圾焚烧炉耐火材料应用现状 [J]. 耐火材料, 2020, 54: 271
|
19 |
Ueda M, Maruyama T. High temperature steam oxidation of high Cr ferritic steels [J]. Zairyo-to-Kankyo, 2005, 54: 175
doi: 10.3323/jcorr1991.54.175
|
20 |
Ohoba S, Yoshikawa Y, Sasaki K, et al. Apprication and life-time evaluation of metal spray coatings for fire-side corrosion of boiler waterwall [A]. International Symposium on Gas Cleaning at High Temperatures [C]. 2010, Taiyuan
|
21 |
Yamada K, Tomono Y, Morimoto J, et al. Hot corrosion behavior of boiler tube materials in refuse incineration environment [J]. Vacuum, 2002, 65: 533
doi: 10.1016/S0042-207X(01)00468-7
|
22 |
Matsubara Y, Sochi Y, Tanabe M, et al. Advanced coatings on furnace wall tubes [J]. J. Therm. Spray Technol., 2007, 16: 195
doi: 10.1007/s11666-007-9030-y
|
23 |
Han B Y, Chu J J, Zhou K B, et al. Research on present situation of quality control and performance optimization of thermal spraying coating based on remelting technology [J]. China Mech. Eng., 2022, 33: 727
|
23 |
韩冰源, 楚佳杰, 周克兵 等. 基于重熔技术的热喷涂涂层质量调控与性能优化现状研究 [J]. 中国机械工程, 2022, 33: 727
|
24 |
Oksa M. Nickel- and iron-based HVOF thermal spray coatings for high temperature corrosion protection in biomass-fired power plant boilers [J]. VTT Science, 2015
|
25 |
Vardelle A, Moreau C, Akedo J, et al. The 2016 thermal spray roadmap [J]. J. Therm. Spray Technol., 2016, 25: 1376
doi: 10.1007/s11666-016-0473-x
|
26 |
Singh H, Sidhu T S, Kalsi S B S. Behaviour of cold sprayed superalloy in incinerator at 900 ℃ [J]. Surf. Eng., 2015, 31: 846
doi: 10.1179/1743294414Y.0000000390
|
27 |
Singh H, Kalsi S B S, Sidhu T S, et al. Microstructure of Ni-Cr-based coating for corrosive conditions [J]. J. Therm. Spray Technol., 2019, 28: 1420
doi: 10.1007/s11666-019-00936-3
|
28 |
Sun L Q. Wearing mode and lifespan evaluation of water wall of circulating fluidized bed boiler [J]. China Spec. Equip. Saf., 2014, 30(8): 37
|
28 |
孙连启. 循环流化床锅炉水冷壁的磨损形式和寿命评估 [J]. 中国特种设备安全, 2014, 30(8): 37
|
29 |
Sun H H, Liu A G, Meng F L. Microstructure and properties of the membrane water-walls of boiler with Inconel 625 alloy surfacing layer [J]. Trans. Mater. Heat Treat., 2013, 34(S2): 96
|
29 |
孙焕焕, 刘爱国, 孟凡玲. 堆焊Inconel625合金的锅炉膜式水冷壁组织和性能 [J]. 材料热处理学报, 2013, 34(S2): 96
|
30 |
Qu Z P, Zhong R G, Wang L, et al. Research progress on high-temperature corrosion treatment schemes of waste to energy boilers [J]. China Surf. Eng., 2020, 33(3): 50
|
30 |
曲作鹏, 钟日钢, 王 磊 等. 垃圾焚烧发电锅炉高温腐蚀治理的研究进展 [J]. 中国表面工程, 2020, 33(3): 50
|
31 |
Heath A G. Extending the lifetime of boiler tubes under severe conditions with advanced coatings in waste and coal fired power plants
|
32 |
Kawahara Y. Evaluation of high-temperature corrosion life using temperature gradient corrosion test with thermal cycle component in waste combustion environments [J]. Mater. Corros., 2006, 57: 60
doi: 10.1002/(ISSN)1521-4176
|
33 |
Kawahara Y. High temperature corrosion mechanisms and effect of alloying elements for materials used in waste incineration environment [J]. Corros. Sci., 2002, 44: 223
doi: 10.1016/S0010-938X(01)00058-0
|
34 |
Guevara C, Herminia S. Statistical lifetime modeling of FeNiCr alloys for high temperature corrosion in waste to energy plants and metal dusting in syngas production plants [Z]. 2016
|
35 |
Viklund P, Hjörnhede A, Henderson P, et al. Corrosion of superheater materials in a waste-to-energy plant [J]. Fuel Process. Technol., 2013, 105: 106
doi: 10.1016/j.fuproc.2011.06.017
|
36 |
Kawahara Y. Application of high temperature corrosion-resistant materials and coatings under severe corrosive environment in waste-to-energy boilers [J]. J. Therm. Spray Technol., 2007, 16: 202
doi: 10.1007/s11666-006-9012-5
|
37 |
Fukuda Y, Kawahara Y. Evaluation of corrosion resistance of waste incinerator superheater tubes coated by high velocity thermal spray [J]. J. Jpn. Inst. Met., 2002, 66: 563
doi: 10.2320/jinstmet1952.66.6_563
|
38 |
Kawahara Y, Orita N, Takahashi K, et al. Demonstration test of new corrosion-resistant boiler tube materials in high efficiency waste incineration plant [J]. Tetsu-to-Hagane, 2001, 87: 544
doi: 10.2355/tetsutohagane1955.87.8_544
|
39 |
Kawahara Y, Nakamura M, Tsuboi H, et al. Evaluation of new corrosion-resistant superheater tubing in high-efficiency waste-to-energy plants [J]. Corrosion, 1998, 54: 576
doi: 10.5006/1.3284886
|
40 |
Tejero-Martin D, Rad M R, McDonald A, et al. Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings [J]. J. Therm. Spray Technol., 2019, 28: 598
doi: 10.1007/s11666-019-00857-1
|
41 |
Fantini V. Laser cladding: A new technology for corrosion and erosion protection of boiler tubes [A]. Thermal Spray 2007: Proceedings from the International Thermal Spray [C]. Beijing: ASM Thermal Spray Society, 2007
|
42 |
Liu S, Liu Z D, Wang Y T, et al. A comparative study on the high temperature corrosion of TP347H stainless steel, C22 alloy and laser-cladding C22 coating in molten chloride salts [J]. Corros. Sci., 2014, 83: 396
doi: 10.1016/j.corsci.2014.03.012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|