Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 487-492    DOI: 10.11902/1005.4537.2020.103
  研究报告 本期目录 | 过刊浏览 |
湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定
王军1, 陈军君1, 谢亿1, 徐松1, 刘兰兰2, 吴堂清3(), 尹付成3
1.国网湖南省电力有限公司电力科学研究院 长沙 410007
2.国网湖南省电力有限公司输电检修公司 长沙 410100
3.湘潭大学材料科学与工程学院 湘潭 411105
Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique
WANG Jun1, CHEN Junjun1, XIE Yi1, XU Song1, LIU Lanlan2, WU Tangqing3(), YIN Fucheng3
1.State Grid Hunan Electric Power Company Limited Research Institute, Changsha 410007, China
2.State Grid Hunan Electric Power Company Limited Transmission Maintenance, Changsha 410100, China
3.School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
全文: PDF(5290 KB)   HTML
摘要: 

通过大气暴晒试验和大气腐蚀监测仪 (ACM) 技术研究了碳钢在湖南大气环境中的腐蚀行为,探讨了大气环境因素、样品形状因子等对大气环境腐蚀严酷性评估的影响。结果表明,湖南地区碳钢腐蚀速率与空气中SO2沉积量呈正相关关系,但氯化工厂附近Cl-的沉积量成为了影响碳钢腐蚀的重要因素。在相同大气环境中,Q345钢的腐蚀速率快于Q235钢,Q235角钢的腐蚀速率快于Q235平板钢。ACM累计电量与Q235钢大气腐蚀速率之间符合线性关系,ACM技术可用于碳钢大气腐蚀行为预测和环境腐蚀性评定。

关键词 Q235钢Q345钢大气腐蚀ACM技术    
Abstract

The corrosion behavior of carbon steels in Hunan province was comparatively studied via atmospheric exposure testing and atmospheric corrosion monitoring (ACM) technique, while the effects of environmental factors and the samples' shape on the corrosivity evaluation of atmospheric environments were assessed. The results showed that the corrosion rate of carbon steels have a positive correlation with SO2 deposit rate in the atmosphere, while the Cl- deposit rate becomes the important influence factor when the corrosion of carbon steels exposed in sites at or nearby a chlorine chemical plant. The corrosion rate of Q345 steel is higher than that of Q235 steel, and the corrosion rate of Q235 angle steel is higher than that of the Q235 flat steel. A linear relationship between the corrosion rate and the cumulative electric quantity measured by ACM was revealed for Q235 carbon steel, thus ACM technology can be used to predict the atmospheric corrosion behavior of carbon steels and assess the corrosivity of atmospheric environments.

Key wordsQ235 steel    Q345 steel    atmospheric corrosion    ACM technology
收稿日期: 2020-06-13     
ZTFLH:  TG172.4  
基金资助:国网公司科技项目(5216A01600VW)
通讯作者: 吴堂清     E-mail: tqwu10s@alum.imr.ac.cn
Corresponding author: WU Tangqing     E-mail: tqwu10s@alum.imr.ac.cn
作者简介: 王军,男,1984年生,博士,高级工程师

引用本文:

王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
Jun WANG, Junjun CHEN, Yi XIE, Song XU, Lanlan LIU, Tangqing WU, Fucheng YIN. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 487-492.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.103      或      https://www.jcscp.org/CN/Y2021/V41/I4/487

图1  Q235平板钢、Q345平板钢和Q235角钢在14个站点的年腐蚀深度
图2  环境因素与Q235平板钢腐蚀速率之间的关系
图3  在2、3、10、14号试验点暴晒2 a后Q235平板钢和Q235角钢表面腐蚀产物宏观形貌
图4  2、3、10、14号试验点中Q235平板钢,Q345平板钢和Q235角钢年腐蚀深度随时间的演化
图5  腐蚀影响因子与腐蚀速率的关系
图6  ACM累积电量与腐蚀速度之间的关系
StandardUnitMaterialCorrosivity grade of atmosphere
C1C2C3C4C5
ISOμm·a-1Carbon steelγcorr≤1.31.3<γcorr≤2525<γcorr≤5050<γcorr≤8080<γcorr≤200
ACMC·cm2·a-1Q235flat steel---Q≤10.510.5<Q≤22.722.7<Q≤37.337.3<Q≤96.0
表1  ACM环境腐蚀性评价标准与ISO环境腐蚀性评价标准的对比
1 Pan C C, Ma C, Xia D H. Estimation for relevance of atmospheric corrosion initiation with surface texture of several metallic materials by electron backscattering diffraction [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 495
1 潘成成, 马超, 夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理 [J]. 中国腐蚀与防护学报, 2019, 39: 495
2 Cai Y K, Zhao Y, Ma X B, et al. Influence of environmental factors on atmospheric corrosion in dynamic environment [J]. Corros. Sci., 2018, 137: 163
3 Meng X B, Jiang W B, Liao Y L, et al. Investigation on atmospheric corrosion behavior of transmission tower materials in simulated industrial environments [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 460
3 孟晓波, 蒋武斌, 廖永力等. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 460
4 Lyon S B, Thompson G E, Johnson J B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: aluminum, galvanized steel, and steel [J]. Corrosion, 1987, 43: 719
5 Wang Z Y, Ma T, Han W, et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process [J]. Trans. Nonferrous. Met. Soc. China, 2007, 17: 326
6 Liu W, Jiang Y K, Ge H H. Comparison of electrochemical corrosion behavior of copper in liquid film in atmosphere containing SO2 or H2S [J]. Corros. Prot., 2015, 36: 934
6 刘伟, 蒋以奎, 葛红花. 大气环境中SO2和H2S对铜的电化学腐蚀行为比较 [J]. 腐蚀与防护, 2015, 36: 934
7 Zhang J K, Chen G H, Wang J Q, et al. Microstructures of corrosion layer of ACSR conductor in atmospheric corrosion and corrosion mechanism [J]. Chin. J. Nonferrous. Met., 2011, 21: 411
7 张建堃, 陈国宏, 王家庆等. 钢芯铝绞导线大气腐蚀产物层的结构及腐蚀机理 [J]. 中国有色金属学报, 2011, 21: 411
8 Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64: 214
9 Xu S, Xie Y, Wang J, et al. Corrosion failure analysis of copper wires in terminal boxes in a rural atmospheric environment [J]. Corros. Sci. Prot. Technol., 2019, 31: 659
9 徐松, 谢亿, 王军等. 乡村大气环境中室外端子箱内铜导线腐蚀失效分析 [J]. 腐蚀科学与防护技术, 2019, 31: 659
10 Wu T Q, Zhou Z F, Xu S, et al. A corrosion failure analysis of copper wires used in outdoor terminal boxes in substation [J]. Eng. Fail. Anal., 2019, 98: 83
11 Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
11 刘艳洁, 王振尧, 王彬彬等. 实时监测技术研究薄液膜下电偶腐蚀的机理 [J]. 中国腐蚀与防护学报, 2017, 37: 261
12 Deng J H, Hu J Z, Deng P C, et al. Effect of oxide scales on initial corrosion behavior of SPHC hot rolled steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 331
12 邓俊豪, 胡杰珍, 邓培昌等. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 331
13 Mansfeld F, Kenkel J V. Electrochemical monitoring of atmospheric corrosion phenomena [J]. Corros. Sci., 1976, 16: 111
14 Mizuno D, Suzuki S, Fujita S, et al. Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor [J]. Corros. Sci., 2014, 83: 217
15 Feng C, Peng B C, Xie Y, et al. Corrosion behavior of T91 steel by salt spray with 0.1%NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 583
15 冯超, 彭碧草, 谢亿等. 0.1%NaHSO3盐雾条件下T91钢的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 583
[1] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[2] 陈文, 黄德兴, 韦奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[5] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[6] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[7] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[10] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[11] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[12] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[13] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[14] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[15] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.