Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 471-478    DOI: 10.11902/1005.4537.2021.111
  研究报告 本期目录 | 过刊浏览 |
换流站阀冷系统中丙二醇防冻液的腐蚀特性研究
黄赵鑫, 朱志平(), 周攀, 江源康, 贺明鹏, 王正刚
长沙理工大学化学与食品工程学院 电力与交通材料保护湖南省重点试验室 长沙 410114
Corrosion Characteristics of Propylene Glycol Antifreeze in Valve Cooling System of Converter Station
HUANG Zhaoxin, ZHU Zhiping(), ZHOU Pan, JIANG Yuankang, HE Mingpeng, WANG Zhenggang
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China
全文: PDF(9739 KB)   HTML
摘要: 

在模拟阀冷系统实际运行温度50 ℃、通10 mA直流电流条件下进行了6063铝合金试样的浸泡腐蚀实验,通过电化学测试、试样失重以及金属表面形貌特征分析 (SEM、EDS、XRD、AFM),研究了泄漏电流、乙二醇与丙二醇2种防冻液 (典型浓度为20%) 对6063铝合金的腐蚀特性。结果表明:6063铝合金在乙二醇和丙二醇溶液中腐蚀规律相似,随浸泡时间增加,腐蚀速率均是先平缓后快速增加,但6063铝合金在丙二醇溶液中腐蚀速率更小;电化学分析结果显示随着浸泡时间增加其界面电容值不断增加,极化电阻逐渐减小、自腐蚀电流密度不断增加,但6063铝合金在丙二醇中的自腐蚀电流密度始终小于乙二醇的;SEM显示在2种防冻液中的试样表面存在明显点蚀坑,不过其数量与分布在丙二醇中明显较少,EDS表明腐蚀产物中含有大量的Al、O以及少量的C,说明2种防冻液及其对应的氧化产物参与铝合金的腐蚀过程;AFM结果表明,6063铝合金在丙二醇中形成的腐蚀产物膜更加致密,耐腐蚀性更强,与SEM结果一致。由上可知,毒性更低的丙二醇比乙二醇对阀冷系统设备的腐蚀性更低,可以作为阀冷系统的备选防冻液。

关键词 阀冷系统6063铝合金乙二醇丙二醇腐蚀特性    
Abstract

The corrosion behavior of 6063 Al-alloy in ethylene glycol and propylene glycol antifreeze (typical concentration is 20%) in the simulated operating conditions of the valve cooling system i.e., at 50 ℃ by applied 10 mA DC current, was comparatively studied by means of immersion test with mass loss measurement and electrochemical test, as well as SEM with EDS, XRD and AFM. The results showed that: the corrosion behavior of 6063 Al-alloy in ethylene glycol solution and propylene glycol solution was comparable. The corrosion rate of 6063 Al-alloy increased slowly and then rapidly with the increase of immersion time. The overall corrosion rate of 6063 Al-alloy in propylene glycol was lower than that in ethylene glycol. Electrochemical analysis results showed that with the increased of immersion time, the interface capacitance increased, the polarization resistance decreased and the free-corrosion current density increased, but the free-corrosion current density of 6063 Al-alloy in propylene glycol was always lower than that of ethylene glycol. SEM observation revealed that there were obvious pits on the surface of the samples in the two antifreeze solutions, but the number of pits was significantly less in the propylene glycol. EDS results showed that the corrosion products composed mainly of Al and O with a little C, indicating that the two antifreeze solutions and their corresponding oxidation products were involved in the corrosion process of Al-alloy. The results of AFM showed that the corrosion product film on 6063 Al-alloy formed in propylene glycol was much compact with higher corrosion resistance, which was consistent with the results of SEM. In summary, propylene glycol with lower toxicity was less corrosive than ethylene glycol, so that could be used as an alternative antifreeze for valve cooling system.

Key wordsvalve cooling system    6063 Al-alloy    ethylene glycol    propylene glycol    corrosion characteristics
收稿日期: 2021-05-18     
ZTFLH:  TG174  
基金资助:国网浙江省电力有限公司科研项目(5211DS160023)
通讯作者: 朱志平     E-mail: zzp8389@163.com
Corresponding author: ZHU Zhiping     E-mail: zzp8389@163.com
作者简介: 黄赵鑫,男,1995年生,硕士生

引用本文:

黄赵鑫, 朱志平, 周攀, 江源康, 贺明鹏, 王正刚. 换流站阀冷系统中丙二醇防冻液的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
Zhaoxin HUANG, Zhiping ZHU, Pan ZHOU, Yuankang JIANG, Mingpeng HE, Zhenggang WANG. Corrosion Characteristics of Propylene Glycol Antifreeze in Valve Cooling System of Converter Station. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 471-478.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.111      或      https://www.jcscp.org/CN/Y2022/V42/I3/471

图1  通10 mA直流电流下6063铝合金在不同防冻液中的腐蚀速率
图2  6063铝合金在在乙二醇溶液和丙二醇溶液中腐蚀40 d后的红外光谱图
图3  腐蚀10、20和30 d后乙二醇溶液 (20%) 中的铝离子含量检测结果
图4  6063铝合金在乙二醇和丙二醇溶液中的极化曲线
SolutionTime / dEcorr / mVIcorr / μA·cm-2
Ethylene glycol solution10-8030.471
20-8181.053
30-7732.676
40-7413.555
Propylene glycol solution10-8000.318
20-8130.716
30-7691.827
40-7382.367
表1  6063铝合金在乙二醇和丙二醇溶液中的极化曲线参数
图5  6063铝合金在乙二醇和丙二醇溶液中的电化学阻抗谱
图6  6063铝合金在腐蚀介质中的等效电路图
SolutionTime / dR1 / Ω·cm2Q1 / F·cm-2R2 / kΩ·cm2Q2 / F·cm-2R3 / kΩ·cm2Rp / kΩ·cm2
Ethylene glycol solution1014313.871×10-108.334.474×10-649.5857.91
209874.286×10-106.135.491×10-646.5152.64
305616.391×10-105.353.748×10-542.4247.77
403147.373×10-104.096.743×10-534.0138.1
Propylene glycol solution1026754.093×10-1012.513.226×10-550.0162.52
2015776.839×10-108.293.898×10-549.8858.17
307127.712×10-106.624.483×10-544.7551.37
406498.478×10-104.225.103×10-536.6940.91
表2  6063铝合金在乙二醇和丙二醇溶液中的EIS拟合结果
图7  6063铝合金在乙二醇溶液和丙二醇溶液中浸泡40 d后的SEM像与EDS图谱
图8  6063铝合金在乙二醇溶液和丙二醇溶液中浸泡40 d后的腐蚀产物膜的力曲线
图9  6063铝合金在乙二醇溶液和丙二醇溶液中浸泡30和40 d后的表面形貌
1 Xu G F, Shang L X. Research on outside cooling system for high voltage thyristor valves [J]. Electric Power, 2009, 42(12): 42
1 许根富, 尚立新. 高压晶闸管换流阀外水冷系统分析 [J]. 中国电力, 2009, 42(12): 42
2 Liu X B, Xu H F, Liu Y. Design optimization analysis for valve cooling system of Jiuhu DC project [J]. Hunan Electric Power, 2017, 37(S1): 77
2 刘晓波, 许鸿飞, 刘源. 酒湖工程阀水冷系统设计优化分析 [J]. 湖南电力, 2017, 37(S1): 77
3 Li G X, Jiang Z Q, Guan Y L, et al. Requirement and control of internal cooling water quality of convertor valve [J]. Heilongjiang Electric Power, 2013, 35: 542
3 李国兴, 姜子秋, 关艳玲等. 换流站换流阀内冷却水水质要求与控制 [J]. 黑龙江电力, 2013, 35: 542
4 Zhao X. Corrosion mechanism and maintenance analysis of static equipment in glycol plant [J]. China Petrochem, 2017, 20(7): 52
4 赵星. 乙二醇装置静设备腐蚀机理及维护分析 [J]. 中国石油石化, 2017, 20(7): 52
5 Liu D Q, He X, Guo X L, et al. Research progress of corrosion of aluminum alloys in ethylene glycol solution [J]. Hot Work. Technol., 2019, 48(2): 36
5 刘德庆, 何潇, 郭新良等. 铝合金在乙二醇溶液中的腐蚀研究进展 [J]. 热加工工艺, 2019, 48(2): 36
6 Wang Y Y, Hao Z J, Lin R. Primary analysis on corrosion and deposit in valve cooling system of Tian-Guang HVDC project [J]. High Voltage Eng., 2006, 32(9): 80
6 王远游, 郝志杰, 林睿. 天广直流工程换流阀冷却系统腐蚀与沉积 [J]. 高电压技术, 2006, 32(9): 80
7 Yu Z Y, Song X N, Cheng Y J, et al. Effect of ethylene glycol on corrosion behavior of 6063 aluminum alloy in valve cooling system [J]. Corros. Prot., 2020, 41(4): 7
7 于志勇, 宋小宁, 程一杰等. 乙二醇对阀冷系统6063铝合金的腐蚀影响 [J]. 腐蚀与防护, 2020, 41(4): 7
8 Haroooni A Q A, Eskandari H, Maddahy M H, et al. Corrosion behavior of 6063 aluminum alloy in ethylene glycol-water solution [J]. Iran J. Mater. Sci. Eng., 2015, 12: 34
9 Niu L, Cheng Y F. Electrochemical characterization of metastable pitting of 3003 aluminum alloy in ethylene glycol–water solution [J]. J. Mater. Sci., 2007, 42: 8613
10 Tao D B. Research and development of long-acting propylene glycol antifreeze coolant [D]. Beijing: Beijing University of Chemical Technology, 2012
10 陶佃彬. 长效丙二醇防冻冷却液的研究开发 [D]. 北京: 北京化工大学, 2012
11 Hu L L, Zhao X Y, Liu P, et al. Effect of AC electric field and thickness of electrolyte film on corrosion behavior of A6082-T6 Al alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 342
11 胡露露, 赵旭阳, 刘盼等. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 342
12 Jiang X, Song X L, Zhang Q, et al. Effect of ethylene glycol on corrosion behavior of X65 mild steel in CO2-saturated 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 375
12 蒋秀, 宋晓良, 张全等. 乙二醇对X65钢在CO2饱和的3.5%NaCl溶液中腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 375
13 Wang D P, Zhang D Q, Lee K Y, et al. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries [J]. J. Power Sources, 2015, 297: 464
14 Zhang D Q, Zhou L X, Rao C Y, et al. Effect of pH and glycolic acid on corrosion of AA6061 alloy in ethylene glycol-water solution [J]. Mater. Corros., 2014, 65: 31
15 Chen X, Tian W M, Li S M, et al. Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution [J]. Chin. J. Aeronau., 2016, 29: 1142
16 Dai Y, Liu S D, Deng Y L, et al. Pitting corrosion of 7020 aluminum alloy in 3.5% NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 279
16 戴芸, 刘胜胆, 邓运来等. 7020铝合金在3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 279
17 М Zin' I, Pokhmurs'kyi V I, Khlopyk О P, et al. Inhibition of the corrosion of aluminum alloy in aqueous solution of ethylene glycol by the rhamnolipid biocomplex [J]. Mater. Sci., 2020, 55: 633
18 Yu H F, Shao B, Zhang Y, et al. Preparation and properties of Zr-based conversion coating on 2A12 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 101
18 于宏飞, 邵博, 张悦等. 2A12铝合金锆基转化膜的制备及性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 101
19 Orlikowski J, Ryl J, Jarzynka M, et al. Instantaneous impedance monitoring of aluminum alloy 7075 corrosion in borate buffer with admixed chloride ions [J]. Corrosion, 2015, 71: 828
20 Kong X D, Ding Z B, Zhu M W. Efficiency and effecting factors of Mg containing Al alloy sacrificial anodes [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 6
20 孔小东, 丁振斌, 朱梅五. 含Mg铝合金牺牲阳极的电流效率及其影响因素 [J]. 中国腐蚀与防护学报, 2010, 30: 6
21 Wang Y J, Liu H L, Wang G J, et al. Investigation of anodic film on a novel RE-containing Al-alloy Al-Zn-Mg-Cu-Sc [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 131
21 王英君, 刘洪雷, 王国军等. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 131
22 Wang M. Corrosion and protection of pure aluminum in propylene glycol aqueous solution [D]. Beijing: Beijing University of Chemical Technology, 2019
22 王蒙. 纯铝在丙二醇水溶液中的腐蚀与防护研究 [D]. 北京: 北京化工大学, 2019
[1] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[2] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[3] 蒋秀, 宋晓良, 张全, 刘艳, 刘曦泽, 屈定荣. 乙二醇对X65钢在CO2饱和的3.5%NaCl溶液中腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 375-381.
[4] 马双忱,邓悦,吴文龙,檀玉,张立男,柴峰,孙盼盼,张小霓. SCR脱硝副产物硫酸氢铵对锅炉尾部金属材料的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 335-342.
[5] 陈廷益, 路文, 李文芳, 付业琦. AA6063铝合金Zr黑灰色转化膜及其自修复性能[J]. 中国腐蚀与防护学报, 2015, 35(2): 177-182.
[6] 申晓妮,赵冬梅,任凤章,田保红. 添加剂对四羟丙基乙二胺(THPED)化学镀厚铜的影响[J]. 中国腐蚀与防护学报, 2011, 31(5): 362-366.