Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 403-409    DOI: 10.11902/1005.4537.2021.165
  中国腐蚀与防护学会杰出青年学术成就奖论文专栏 本期目录 | 过刊浏览 |
几种苛刻海洋大气环境下的海工材料腐蚀机制
崔中雨(), 葛峰, 王昕
中国海洋大学材料科学与工程学院 青岛 266100
Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments
CUI Zhongyu(), GE Feng, WANG Xin
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(10895 KB)   HTML
摘要: 

以南极低温高辐照冰雪凝-融环境、南海高温高湿高盐雾环境以及滨海氯-霾耦合环境3种典型环境为研究对象,开展了典型海工材料的腐蚀行为研究。结果表明,南极低温环境下冰层、雪层覆盖下电化学腐蚀过程依然可以发生,冰雪凝-融过程导致液膜长周期存在促进了腐蚀的进行且加速局部腐蚀。南海高温高湿高盐雾环境下有色金属材料表面存在化学氧化和电化学腐蚀协同作用机制,不同铝合金的局部腐蚀萌生扩展驱动力不同 (即扩散与电荷转移、氢致沿晶裂纹、腐蚀产物楔入效应),表面润湿时间和Cl-协同作用导致腐蚀动力学偏离幂函数规律。滨海氯-霾耦合环境下NH4+加速腐蚀的关键控制因素为缓冲效应导致的持续供H+,Cl-、NH4+、NO3-协同作用下镁合金发生“类自催化点蚀”。

关键词 大气腐蚀苛刻海洋环境南极腐蚀机理    
Abstract

In this work, the corrosion behavior of marine engineering materials in three typical harsh marine atmospheric environments is investigated i.e., the so called "Antarctic low-temperature and high-irradiation ice-snow freezing-melting environment", "high-temperature, high-humidity and high-salt fog atmospheric environment of South China Sea", and "coastal chlorine-haze coupling environment". The results show that in Antarctic environment, the electrochemical corrosion process can occur even beneath the cover of snow and ice at extremely low temperature. The freezing-melting process of ice and snow leads to the existence of surface electrolyte film for a long period, which promotes the corrosion reactions and accelerates the localized corrosion. In the environment of the South China Sea, there is a synergistic effect of chemical oxidation and electrochemical corrosion on the surface of non-ferrous materials in high humidity and high Cl- atmospheric environment at high temperature. Different aluminum alloys have different corrosion initiation and propagation driving forces (i.e., diffusion and charge transfer, hydrogen-induced intergranular cracking, and wedging effect of corrosion products). The synergistic effect of time of wetness (TOW) and Cl- content lead to the deviation of corrosion dynamics from the power function. In the coastal chlorine-haze coupling environment, the key controlling factor of NH4+ in acceleration of corrosion in the chlorine-haze environment is the continuous supply of H+ caused by the buffering effect of NH4+. Meanwhile,“quasi auto-catalytic pitting” corrosion occurs because of the synergistic effect of Cl-, NO3-, and NH4+.

Key wordsatmospheric corrosion    severe marine environment    south pole    corrosion mechanism
收稿日期: 2021-07-14     
ZTFLH:  TG172  
基金资助:中央高校基本科研业务费(201762008);科技基础资源调查专项(2019FY101400)
通讯作者: 崔中雨     E-mail: cuizhongyu@ouc.edu.cn
Corresponding author: CUI Zhongyu     E-mail: cuizhongyu@ouc.edu.cn
作者简介: 崔中雨,男,1987年生,博士,副教授

引用本文:

崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
Zhongyu CUI, Feng GE, Xin WANG. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 403-409.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.165      或      https://www.jcscp.org/CN/Y2022/V42/I3/403

图1  Q235钢在南极中山站暴晒1个月后的腐蚀形貌、腐蚀产物Raman分析及表面深度分布
图2  Q235钢室内中低温循环试验装置、温度循环区间及腐蚀速率
图3  AZ31镁合金在西沙海洋大气环境下的腐蚀失重、点蚀深度变化以及纯锌锈层的形貌及EPMA元素分布结果[14,16]
图4  AZ31镁合金在含不同浓度NH4NO3的0.1 mol/L NaCl溶液中的宏观腐蚀形貌[24]
图5  AZ31镁合金在含低浓度、特殊浓度区间及高浓度NH4NO3条件下的腐蚀示意图
1 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in hunan provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
1 王军, 陈军君, 谢亿等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
2 Li X G, Li Q, Pei Z B, et al. Latest developments on atmospheric corrosion monitoring technologies for steels [J]. Angang Technol., 2020, (6): 1
2 李晓刚, 李清, 裴梓博等. 钢铁大气腐蚀监测技术研究进展 [J]. 鞍钢技术, 2020, (6): 1
3 Zhao J B, Zhao Q Y, Chen L H, et al. Effect of different surface treatments on corrosion behavior of 300M steel in Qingdao marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 504
3 赵晋斌, 赵起越, 陈林恒等. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 504
4 de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
5 de la Fuente D, Otero-Huerta E, Morcillo M. Studies of long-term weathering of aluminium in the atmosphere [J]. Corros. Sci., 2007, 49: 3134
6 de la Fuente D, Castaño J G, Morcillo M. Long-term atmospheric corrosion of zinc [J]. Corros. Sci., 2007, 49: 1420
7 Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India [J]. Corros. Sci., 2006, 48: 3584
8 Li X G, Dong C F, Gao J, et al. The scientific research and data-sharing network of steels atmosphere corrosion in China [J]. Met. World, 2010, (4): 1
8 李晓刚, 董超芳, 高瑾等. 中国钢铁材料大气腐蚀科学研究和数据共享网络建设 [J]. 金属世界, 2010, (4): 1
9 Li X G, Xiao K, Dong C F, et al. Corrosion mechanism and classification in marine atmosphere of China [A]. Conf. Mar. Mater. Corros. Prot. [C]. Beijing, 2014: 7
9 李晓刚, 肖葵, 董超芳等. 我国海洋大气腐蚀分级分类与机理 [A]. 2014海洋材料腐蚀与防护大会 [C]. 北京, 2014: 7
10 Cao C N. Natrual Environment Corrosion of Materials in China [M]. Beijing: Chemical Industry Press, 2005
10 曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
11 Maxwell P, Viduka A. Antarctic observations: on metal corrosion at three historic huts on Ross Island [A]. Proceedings of Metal 2004 [C]. Canberra, 2004: 484
12 Mikhailov A A, Strekalov P V, Panchenko Y M. Atmospheric corrosion of metals in regions of cold and extremely cold climate (a review) [J]. Prot. Met., 2008, 44: 644
13 Morcillo M, Chico B, de la Fuente D, et al. Atmospheric corrosion of reference metals in Antarctic sites [J]. Cold Reg. Sci. Technol., 2004, 40: 165
14 Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment [J]. Corros. Sci., 2013, 76: 243
15 Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion behaviour of pure Al 1060 in tropical marine environment [J]. Corros. Eng. Sci. Technol., 2015, 50: 438
16 Cui Z Y, Li X G, Xiao K, et al. Corrosion behavior of field-exposed zinc in a tropical marine atmosphere [J]. Corrosion, 2014, 70: 731
17 Cui Z Y, Li X G, Xiao K, et al. Pitting corrosion behaviour of AZ31 magnesium in tropical marine atmosphere [J]. Corros. Eng. Sci. Technol., 2014, 49: 363
18 Cui Z Y, Ge F, Li X G, et al. Mechanistic studies of atmospheric corrosion behavior of Al and Al-based alloys in a tropical marine environment [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 633
19 Cui Z Y, Li X G, Man C, et al. Corrosion behavior of field-exposed 7A04 aluminum alloy in the Xisha tropical marine atmosphere [J]. J Mater. Eng. Perform., 2015, 24: 2885
20 Wang J, Hu Z M, Chen Y Y, et al. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China [J]. Atmos. Environ., 2013, 68: 221
21 Pan H, Wang L W, Lin Y, et al. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution [J]. J. Mater. Sci. Technol., 2020, 54: 1
22 Ge F, Yin J X, Liu Y, et al. Roles of pH in the NH4+-induced corrosion of AZ31 magnesium alloy in chloride environment [J]. J. Magnes. Alloy., 2021, DOI: 10.1016/j.jma.2021.02.004
23 Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
24 Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
24 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553
25 Tian H Y, Sun F L, Chu F Z, et al. Passivation behavior and surface chemistry of 316 SS in the environment containing Cl- and NH4+ [J]. J. Electroanal. Chem., 2021, 886: 115138
[1] 刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[2] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[4] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[5] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[6] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[7] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[8] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[9] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[10] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[11] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[12] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[13] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[14] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[15] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.