|
|
DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究 |
陈浩1,2,陈庆1,辛丽2( ),时龙1,朱圣龙2,王福会3,4 |
1. 吉林化工学院机电工程学院 吉林 132022 2. 中国科学院金属研究所 金属腐蚀与防护实验室 沈阳 110016 3. 东北大学材料科学与工程学院 沈阳 110819 4. 沈阳材料科学国家研究中心 沈阳 110016 |
|
Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy |
Hao CHEN1,2,Qing CHEN1,Li XIN2( ),Long SHI1,Shenglong ZHU2,Fuhui WANG3,4 |
1. College of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China 2. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 4. Shenyang National Laboratory for Materials Science, Shenyang 110016, China |
引用本文:
陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
Hao CHEN,
Qing CHEN,
Li XIN,
Long SHI,
Shenglong ZHU,
Fuhui WANG.
Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 59-67.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2018.026
或
https://www.jcscp.org/CN/Y2019/V39/I1/59
|
[1] | Hu Z Q, Liu L R, Jin T, et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1 | [1] | 胡壮麒, 刘丽荣, 金涛等. 镍基高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1 | [2] | Shi L, Xin L, Wang F H, et al. Influences of nanocrystalline coating on hot corrosion behavior of DD98M alloy [J]. China Surf. Eng., 2017, 30(5): 1 | [2] | 时龙, 辛丽, 王福会等. 纳米晶涂层对DD98M合金热腐蚀行为的影响 [J]. 中国表面工程, 2017, 30(5): 1) | [3] | Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39A: 1647 | [4] | Angenete J, Stiller K, Bakchinova E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050 ℃ [J]. Surf. Coat. Technol., 2004, 176: 272 | [5] | Shi L, Li X, Wang F H, et al. Oxidation behavior of sputtered DD98M nanocrystalline coating at 1000 ℃ [J]. Oxid. Met., 2016, 86: 263 | [6] | Shi L, Li X, Wang X Y, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. J. Alloy. Compd., 2015, 649: 515 | [7] | Bai B, Guo H B, Peng H, et al. Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy [J]. Corros. Sci., 2011, 53: 2721 | [8] | Wang J L, Chen M H, Zhu S L, et al. Ta effect on oxidation of a nickel-based single-crystal superalloy and its sputtered nanocrystalline coating at 900-1100 ℃ [J]. Appl. Surf. Sci., 2015, 345: 194 | [9] | Wang J L, Chen M H, Yang L L, et al. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2015, 98: 530 | [10] | Wang X Y, Xin L, Wang F H, et al. Influence of sputtered nanocrystalline coating on oxidation and hot corrosion of a nickel-based superalloy M951 [J]. J. Mater. Sci. Technol., 2014, 30: 867 | [11] | Yang L L, Chen M H, Wang J L, et al. A duplex nanocrystalline coating for high-temperature applications on single-crystal superalloy [J]. Corros. Sci., 2016, 102: 72 | [12] | Lou H Y, Wang F H, Zhu S L, et al. Oxide formation of K38G superalloy and its sputtered micrograined coating [J]. Surf. Coat. Technol., 1994, 63: 105 | [13] | Wagner C. Reaktionstypen bei der oxydation von legierungen [J]. Z Elektrochem., 1959, 63: 772 | [14] | Jackson R W, Lipkin D M, Pollock T M. The oxidation and rumpling behavior of overlay B2 bond coats containing Pt, Pd, Cr and Hf [J]. Surf. Coat. Technol., 2013, 221: 13 | [15] | He J, Luan Y, Guo H B, et al. The role of Cr and Si in affecting high-temperature oxidation behaviour of minor Dy doped NiAlalloys [J]. Corros. Sci., 2013, 77: 322 | [16] | Zhou Z M, Peng H, Zheng L, et al. Improved oxide scale adherence of low-Pt/Hf co-doped β-NiAlCrSi coating on superalloy IC21 at 1200 °C [J]. Corros. Sci., 2016, 105: 78 | [17] | Kamide H, Tanaka Y. Effect of Si content on cyclic hot corrosion of NiAl in fused Na2SO4-NaCl mixture [J]. J. Jpn. Inst. Met., 1993, 57: 533 | [18] | Hodge P E, Miller R A, Gedwill M A. Evaluation of the hot corrosion behavior of thermal barrier coatings [J]. Thin Solid Films, 1980, 73: 447 | [19] | Kvernes I, Forseth S. Corrosion mechanisms of ceramic coatings in diesel engines [J]. Mater. Sci. Eng., 1987, 88: 61 | [20] | Navas G, Viloria L. Laboratory and field corrosion behavior of coatings for turbine blades [J]. Surf. Coat. Technol., 1997, 94/95: 161 | [21] | Zheng X J, Cao T L, Shi S T. Fused salt electrolytic co-deposition of Al and Si and high temperature corrosion resistance of Si-containing aluminium coatings [J]. | [21] | Chin J.. Soc. Corros. Prot., 1986, 6: 249 | [21] | 郑学进, 曹铁梁, 石声泰. 熔盐电解共渗铝硅及渗层的抗高温腐蚀性能 [J]. 中国腐蚀与防护学报, 1986, 6: 249 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|