Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 497-504    DOI: 10.11902/1005.4537.2016.130
  本期目录 | 过刊浏览 |
1. 北京航空航天大学能源与动力工程学院 北京 100191
2. 北京航空航天大学材料科学与工程学院 北京 100191
Effect of Interdiffusion Between Ni-Al Coating and Substrate on Microstructure Stability of Single Crystal Superalloy
Jingyong SUN1(),Qiushi LI1,Hongbo GUO2,Shengkai GONG2
1. School of Materials Science and Engneering, Beihang University, Beijing 100191, China
2. School of Energy and Power Engineering, Beihang University, Beijing 100191, China
全文: PDF(6279 KB)   HTML

以二代单晶René N5为基体,采用电子束物理气相沉积 (EB-PVD) 制备不同Al含量的R-25 (10.90%Al,质量分数),R-30 (14.30%Al) 和R-35 (17.60%Al) 涂层,3种涂层的相组成分别为γ+γ '双相、γ '单相和γ '+β双相。研究了1100 ℃条件下3种涂层与单晶基体的扩散行为及其对界面处单晶基体的损伤以及针状TCP相析出等微观组织的影响。发现单晶基体γ/γ '共格强化结构损伤的深度与涂层中Al的浓度非正相关,R-30涂层对基体的损伤深度最大。随着涂层中Al含量的增多,基体扩散区的TCP相增多。

关键词 Ni-Al涂层电子束物理气相沉积单晶高温合金互扩散    

The coatings applied on gas turbine blade of single crystal superalloy are required to have a high adhesive strength with the substrate. The interdiffusion between coatings and substrate alloys is concerned due to its impact on the microstructure stability of the superalloy substrates. In view of the importance of the interdiffusion behavior, Ni-Al coatings with 10.90%(mass fraction),14.30% and 17.60% Al respectively are prepared on the second generation single crystal superalloy René N5 by electron beam-physical vapor deposition (EB-PVD). Correspondingly, the coatings are composed of γ+γ ' two phases, γ ' single phase and γ '+β two phases, respectively. The effect of the interdiffusion between Ni-Al coatings and single crystal substrate on the microstructure stability of the superalloy substrate is investigated. It is found that the γ/γ ' coherent structure of the single crystal substrate is destroyed by inward diffusion of Al. However, the depth of the destroyed zone in the substrate has not positive correlation with Al concentration. For the coating with 14.30% Al, the interdiffusion induced damage of the substrate is most severe. The increasing of Al concentration in the Ni-Al coatings promotes the formation of TCP phase in the diffusion zone of the substrate.

Key wordsNi-Al coating    EB-PVD    single crystal superalloy    interdiffusion
基金资助:国家自然科学基金项目 (51231001,51425102和51590894) 资助


孙井永,李秋实,郭洪波,宫声凯. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 497-504.
Jingyong SUN, Qiushi LI, Hongbo GUO, Shengkai GONG. Effect of Interdiffusion Between Ni-Al Coating and Substrate on Microstructure Stability of Single Crystal Superalloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 497-504.

链接本文:      或

EB-PVD target Ni Al
Ni25Al 86.09 13.91
Ni30Al 83.54 16.46
Ni35Al 80.16 19.84
表1  EB-PVD靶材的化学成分
Content Cr Co Mo W Ta Re Hf Al Ni
Atomic fraction 8.12 7.68 0.94 1.64 2.33 0.97 0.05 13.86 Bal.
Mass fraction 7.00 7.50 1.50 5.00 7.00 3.00 0.15 6.20 Bal.
表2  René N5合金元素组成
Coating Atomic fraction / % Mass fraction / %
Ni Al Ni Al
R-25 78.98 21.02 89.10 10.90
R-30 73.37 26.63 85.70 14.30
R-35 68.28 31.72 82.40 17.60
表3  3种Ni-Al涂层的元素组成
图1  Ni-Al涂层制备态和经1100 ℃/100 h热处理后的相组成
图2  沉积R-25涂层的合金试样的截面形貌及元素分布
图3  R-30涂层的截面形貌及元素分布
图4  R-35涂层试样的截面形貌及元素分布
图5  真空条件下单晶高温合金基体的SDZ或者SRZ深度与热处理时间的关系曲线
图6  R-30涂层/基体5 h热处理后的断面元素分布图
[1] Padture N P, Gell M, Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280
[2] Schulz U, Leyens C, Fristcher K.Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerosp. Sci. Technol., 2003, 7(1): 73
[3] Xu H B, Guo H B.Thermal Barrier Coatings [M]. Cambridge: Woodhead Publishing, 2011: 1
[4] Wei Q L, Guo H B, Gong S K, et al.Novel microstructure of EB-PVD double ceramic layered thermal barrier coatings[J]. Thin Solid Films, 2008, 516(16): 5736
[5] Miller R A.Current status of thermal barrier coatings-an overview[J]. Surf. Coat. Technol., 1987, 30(1): 1
[6] Racek O, Berndt C C, Guru D N, et al.Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques[J]. Surf. Coat. Technol., 2006, 201(2): 338
[7] Bai B, Guo H B, Peng H, et al.Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy[J]. Corros. Sci., 2011, 53(9): 2721
[8] Evans H E, Taylor M P.Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems[J]. Oxid. Met., 2001, 55(1): 17
[9] Basukia E, Croskya A, Gleeson B, et al.Interdiffusion behaviour in aluminide-coated René 80H at 1150 ℃[J]. Mater. Sci. Eng., 1997, A224(1): 27
[10] Nystrom J D, Pollock T M, Murphy W H, et al. Discontinuous cellular precipitation in a high-refractory nickel-base superalloy [J]. Metall. Mater. Trans., 1997, 28(12)A: 2443
[11] Angenete J, Stiller K, Bakchinova E, et al.Microstructural and microchemical development of simple and pt-modified aluminide diffusion coatings during long term oxidation at 1050 ℃[J]. Surf. Coat. Technol., 2004, 176(3): 272
[12] Maurel V, Helfen L, Soulignac R, et al.Three-dimensional damage evolution measurement in EB-PVD TBCs using synchrotron laminography[J]. Oxid. Met., 2013, 79(3/4): 313
[13] Reed R C.The Superalloys Fundamentals and Applications [M]. New York: Cambridge University Press, 2006: 312
[14] Murakami H, Sakai T.Anisotropy of secondary reaction zone formation in aluminized Ni-based single-crystal superalloys[J]. Scr. Mater., 2008, 59(4): 428
[15] Hong H U, Yoon J G, Choi B G, et al.On the mechanism of secondary reaction zone formation in a coated Nickel-based single-crystal superalloy containing ruthenium[J]. Scr. Mater., 2013, 69(1): 33
[16] Liu C T.Effect of boron on grain-boundaries in Ni3Al[J]. Mater. Chem. Phys., 1995, 42(1): 77
[17] Liu C T, White C L, Horton J A, et al.Effect of boron on grain-boundaries in Ni3Al[J]. Acta Metall., 1985, 33(1): 213
[18] Haynes J A, Pint B A, Zhang Y, et al.Comparison of the cyclic oxidation behavior of β-NiAl, β-NiPtAl and γ-γ ′ NiPtAl coatings on various superalloys[J]. Surf. Coat. Technol., 2007, 202(4): 730
[19] Guo H, Sun L, Li H, et al.High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system[J]. Thin Solid Films, 2008, 516(16): 5732
[20] Paidar V, Pope D P.The anomalous temperature dependence of the yield stress and related orientational dependences in L12 compounds[J]. Acta Metall., 1984, 32(3): 435
[21] Mumm D R, Evans A G, Spitsberg I T.Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system[J]. Acta Mater., 2001, 49(12): 2329
[22] Peng H, Guo H B, He J, et al.Oxidation and diffusion barrier behaviors of double-layer NiCoCrAlY coatings produced by plasma activated EB-PVD[J]. Surf. Coat. Technol., 2011, 205(19): 4658
[23] Sun J Y, Pei Y L, Li S S, et al.Improvement in ductility of high strength polycrystalline Ni-rich Ni3Al alloy produced by EB-PVD[J]. J. Alloys Compd., 2014, 614: 196
[24] Okamoto H.Al-Ni (aluminum-nickel)[J]. J. Phase Equilib. Diffus., 2004, 25(4): 394
[25] Wang R, Gong X, Peng H, et al.Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations[J]. Appl. Surf. Sci., 2015, 326: 124
[26] Bürgel R, Portella P D, Preuhs J.Recrystallization in single crystals of nickel base superalloys [A]. Superalloys 2000[C]. Seven Springs, 2000: 229
[27] Beke D L, Szabó I A, Erdélyi Z, et al.Diffusion-induced stresses and their relaxation[J]. Mater. Sci. Eng., 2004, A387: 4
[28] Yu Z, Hass D D, Wadley H N G. NiAl bond coats made by a directed vapor deposition approach[J]. Mater. Sci. Eng., 2005, A394(1): 43
[29] Guo H, Zhang T, Wang S, et al.Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 ℃[J]. Corros. Sci., 2011, 53(6): 2228
[1] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[2] 韦华; 管恒荣; 孙晓峰; 郑启; 侯桂臣; 胡壮麒 . K465高温合金铝化物层Ni/Al互扩散系数计算[J]. 中国腐蚀与防护学报, 2004, 24(5): 257-261 .
[3] 毕晓日方; 郭洪波; 宫声凯; 徐惠彬 . 电子束物理气相沉积热障涂层抗高温腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 84-87 .
[4] 李美桓; 孙晓峰; 宫声凯; 张重远; 管恒荣; 胡望宇; 胡壮麒 . EB-PVD热障涂层高温氧化过程中的显微结构和相分析[J]. 中国腐蚀与防护学报, 2002, 22(2): 105-110 .