Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 387-394    DOI: 10.11902/1005.4537.2019.161
  本期目录 | 过刊浏览 |
海洋环境中硫酸盐还原菌的快速测定方法研究
戚鹏1,2,3,万逸1,2,3,曾艳1,2,3,郑来宝1,2,3,张盾1,2,3()
1. 中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071
2. 中国科学院海洋大科学研究中心 青岛 266071
3. 青岛海洋科学与技术国家实验室 海洋腐蚀与防护开放工作室 青岛 266237
Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments
QI Peng1,2,3,WAN Yi1,2,3,ZENG Yan1,2,3,ZHENG Laibao1,2,3,ZHANG Dun1,2,3()
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
3. Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
全文: PDF(4290 KB)   HTML
摘要: 

硫酸盐还原菌 (SRB) 是腐蚀性最强,也是研究最广泛的腐蚀微生物,广泛存在于海洋环境中。SRB的状态与其参与的腐蚀过程密切相关,而SRB状态的快速测定仍是一大难题。SRB种群浓度和代谢活性的快速、准确测定,能够为揭示SRB在腐蚀过程中的作用机理,实现微生物腐蚀状态监测提供理论依据和指导。本文将简要介绍本课题组在SRB种群浓度和代谢活性检测的研究进展,阐述各类方法的优缺点、适用条件及检测性能,为后续SRB状态检测方法的发展及实用化提供参考。

关键词 硫酸盐还原菌活性种群浓度测定    
Abstract

Sulfate-reducing bacteria (SRB) are the most corrosive and the most extensively studied corrosion related microorganisms, they are widely distributed in various marine environments. Although it has been clearly known that the status of SRB is closely related with their roles in relevant corrosion processes, however the determination of the population concentration and metabolic activity of SRB is still a big problem in the present. The development of quick and accurate detection approach could provide theoretical basis and guidance for revealing the mechanism of SRB action in the corrosion process and monitoring of microbial influenced corrosion status. This paper briefly introduces the research progress of our research group in detection of the population concentration and metabolic activity of SRB, and elaborates their advantages and disadvantages, applicable conditions and detection performance, which may provide reference for the development and practical application of detection methods for the actual situation of SRB in marine environments in the future.

Key wordssulfate-reducing bacteria    metabolic activity    bacterial population    detection
收稿日期: 2019-09-18     
ZTFLH:  TM207  
基金资助:国家自然科学基金(41876101);中国科协青年人才托举工程(2018QNRC001)
通讯作者: 张盾     E-mail: zhangdun@qdio.ac.cn
Corresponding author: Dun ZHANG     E-mail: zhangdun@qdio.ac.cn
作者简介: 戚鹏,男,1986年生,博士,副研究员

引用本文:

戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
QI Peng, WAN Yi, ZENG Yan, ZHENG Laibao, ZHANG Dun. Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 387-394.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.161      或      https://www.jcscp.org/CN/Y2019/V39/I5/387

图1  多巴胺自激发检测平台的构建流程及检测性能评价[18]
图2  氧化石墨烯标记检测平台的构建流程及检测性能评价[21]
图3  基于生物印迹薄膜检测平台的构建示意图及检测性能图[24]
图4  基于巯基蛋白酶抑制作用检测SRB的原理及性能图[27]
图5  基于ZnO/ZnS阵列转化检测平台检测SRB的原理图及检测性能[32]
图6  基于利用DNA纳米生物条码-荧光系统的检测微生物原理图及检测性能图[35]
图7  基于新型酶标体系信号放大检测平台检测微生物原理图[36]
图8  全固态硫离子选择性电极的离子传导示意图及SRB生物膜代谢活性监测性能
图9  荧光探针测定SRB生物膜表面种群浓度和生物膜代谢活性
1 KipN, Van VeenJ A. The dual role of microbes in corrosion [J]. ISME J., 2015, 9: 542
2 MuyzerG, StamsA J M. The ecology and biotechnology of sulphate-reducing bacteria [J]. Nat. Rev. Microbiol., 2008, 6: 441
3 LiuH W, ChengY F. Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions [J]. Corros. Sci., 2018, 133: 178
4 TanJ L, GohP C, BlackwoodD J. Influence of H2S-producing chemical species in culture medium and energy source starvation on carbon steel corrosion caused by methanogens [J]. Corros. Sci., 2017, 119: 102
5 UsherK M, KaksonenA H, ColeI, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeter. Biodegr., 2014, 93: 84
6 XuD K, LiY C, GuT Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
7 KharchenkoU V, BelenevaI A, KarpovV A, et al. Microbiological activity of fouling communities as indicator of biocorrosion aggressiveness of sea water [J]. Prot. Met. Phy. Chem. Surf., 2010, 46: 842
8 Abd-El-MalekY, RizkS G. Counting of sulphate-reducing bacteria in mixed bacterial populations [J]. Nature, 1958, 182: 538
9 VesterF, IngvorsenK. Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer [J]. Appl. Environ. Microbiol., 1998, 64: 1700
10 BhagobatyR K. Culture dependent methods for enumeration of sulphate reducing bacteria (SRB) in the Oil and Gas industry [J]. Rev. Environ. Sci. Bio-Technol., 2014, 13: 11
11 GaylardeC, CookP. New rapid methods for the identification of sulphate-reducing bacteria [J]. Int. Biodeter., 1990, 26: 337
12 GuanJ, XiaL P, WangL Y, et al. Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes [J]. Int. Biodeter. Biodegr., 2013, 76: 58
13 B?dtkerG, ThorstensonT, Lilleb?B L P, et al. The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems [J]. J. Ind. Microbiol. Biotechnol., 2008, 35: 1625
14 LeeW, CharacklisW G. Corrosion of mild steel under anaerobic biofilm [J]. Corrosion, 1993, 49: 186
15 LiuH, YuT, LiuY. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm [J]. Sci. Total Environ., 2015, 536: 116
16 RathnayakeR M L D, SugaharaS, MakiH, et al. High spatial resolution analysis of the distribution of sulfate reduction and sulfide oxidation in hypoxic sediment in a eutrophic estuary [J]. Water Sci. Technol., 2017, 75: 418
17 SunJ, HuS H, SharmaK R, et al. Stratified microbial structure and activity in sulfide- and methane-producing anaerobic sewer biofilms [J]. Appl. Environ. Microbiol., 2014, 80: 7042
18 WanY, ZhangD, WangY, et al. Direct immobilisation of antibodies on a bioinspired architecture as a sensing platform [J]. Biosens. Bioelectron., 2011, 26: 2595
19 WanY, ZhangD, WangY, et al. A 3D-impedimetric immunosensor based on foam Ni for detection of sulfate-reducing bacteria [J]. Electrochem. Commun., 2010, 12: 288
20 WanY, ZhangD, HouB R. Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay [J]. Talanta, 2009, 80: 218
21 WanY, WangY, WuJ J, et al. Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors [J]. Anal. Chem., 2011, 83: 648
22 WanY, QiP, ZhangD, et al. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay [J]. Biosens. Bioelectron., 2012, 33: 69
23 WanY, LinZ F, ZhangD, et al. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria [J]. Biosens. Bioelectron., 2011, 26: 1959
24 QiP, WanY, ZhangD. Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection [J]. Biosens. Bioelectron., 2013, 39: 282
25 WanY, ZhangD, HouB R. Determination of sulphate-reducing bacteria based on vancomycin-functionalised magnetic nanoparticles using a modification-free quartz crystal microbalance [J]. Biosens. Bioelectron., 2010, 25: 1847
26 QiP, ZhangD, WanY, et al. A facile approach to construct versatile signal amplification system for bacterial detection [J]. Talanta, 2014, 118: 333
27 QiP, ZhangD, WanY. A novel sulfate-reducing bacteria detection method based on inhibition of cysteine protease activity [J]. Talanta, 2014, 129: 270
28 QiP, ZhangD, WanY. Development of an amperometric microbial biosensor based on Thiobacillus thioparus cells for sulfide and its application to detection of sulfate-reducing bacteria [J]. Electroanalysis, 2014, 26: 1824
29 ZhengL B, YeX Y, QiP, et al. Fluorometric detection of sulfate-reducing bacteria via the aggregation-induced emission of glutathione-gold(I) complexes [J]. Microchim. Acta, 2019, 186: 382
30 WanY, ZhangD, HouB R. Selective and specific detection of sulfate-reducing bacteria using potentiometric stripping analysis [J]. Talanta, 2010, 82: 1608
31 QiP, ZhangD, WanY. Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles [J]. Anal. Chim. Acta, 2013, 800: 65
32 QiP, ZhangD, WanY. Determination of sulfate-reducing bacteria with chemical conversion from ZnO nanorods arrays to ZnS arrays [J]. Sens. Actuators, 2013, 181B: 274
33 QiP, ZhangD, ZengY, et al. Biosynthesis of CdS nanoparticles: a fluorescent sensor for sulfate-reducing bacteria detection [J]. Talanta, 2016, 147: 142
34 ZengY, WanY, ZhangD, et al. A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III-aided cycling amplification [J]. Talanta, 2015, 132: 59
35 ZengY, ZhangD, QiP, et al. Colorimetric detection of DNA by using target catalyzed DNA nanostructure assembly and unmodified gold nanoparticles [J]. Microchim. Acta, 2017, 184: 4809
36 ZengY, QiP, WanY, et al. Sensitive quantitative detection of bacterial DNA based on lysozyme signal probe and Exo III-aided cycling amplification reaction [J]. Sens. Actuators, 2016, 231B: 675
37 ZhengL B, QiP, ZhangD. DNA-templated fluorescent silver nanoclusters for sensitive detection of pathogenic bacteria based on MNP-DNAzyme-AChE complex [J]. Sens. Actuators, 2018, 276B: 42
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[4] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[5] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[7] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[8] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[9] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[10] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[11] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[12] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[13] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[14] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[15] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.