|
|
海洋环境中硫酸盐还原菌的快速测定方法研究 |
戚鹏1,2,3,万逸1,2,3,曾艳1,2,3,郑来宝1,2,3,张盾1,2,3( ) |
1. 中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071 2. 中国科学院海洋大科学研究中心 青岛 266071 3. 青岛海洋科学与技术国家实验室 海洋腐蚀与防护开放工作室 青岛 266237 |
|
Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments |
QI Peng1,2,3,WAN Yi1,2,3,ZENG Yan1,2,3,ZHENG Laibao1,2,3,ZHANG Dun1,2,3( ) |
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China 3. Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China |
引用本文:
戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
QI Peng,
WAN Yi,
ZENG Yan,
ZHENG Laibao,
ZHANG Dun.
Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 387-394.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.161
或
https://www.jcscp.org/CN/Y2019/V39/I5/387
|
1 | KipN, Van VeenJ A. The dual role of microbes in corrosion [J]. ISME J., 2015, 9: 542 | 2 | MuyzerG, StamsA J M. The ecology and biotechnology of sulphate-reducing bacteria [J]. Nat. Rev. Microbiol., 2008, 6: 441 | 3 | LiuH W, ChengY F. Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions [J]. Corros. Sci., 2018, 133: 178 | 4 | TanJ L, GohP C, BlackwoodD J. Influence of H2S-producing chemical species in culture medium and energy source starvation on carbon steel corrosion caused by methanogens [J]. Corros. Sci., 2017, 119: 102 | 5 | UsherK M, KaksonenA H, ColeI, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeter. Biodegr., 2014, 93: 84 | 6 | XuD K, LiY C, GuT Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52 | 7 | KharchenkoU V, BelenevaI A, KarpovV A, et al. Microbiological activity of fouling communities as indicator of biocorrosion aggressiveness of sea water [J]. Prot. Met. Phy. Chem. Surf., 2010, 46: 842 | 8 | Abd-El-MalekY, RizkS G. Counting of sulphate-reducing bacteria in mixed bacterial populations [J]. Nature, 1958, 182: 538 | 9 | VesterF, IngvorsenK. Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer [J]. Appl. Environ. Microbiol., 1998, 64: 1700 | 10 | BhagobatyR K. Culture dependent methods for enumeration of sulphate reducing bacteria (SRB) in the Oil and Gas industry [J]. Rev. Environ. Sci. Bio-Technol., 2014, 13: 11 | 11 | GaylardeC, CookP. New rapid methods for the identification of sulphate-reducing bacteria [J]. Int. Biodeter., 1990, 26: 337 | 12 | GuanJ, XiaL P, WangL Y, et al. Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes [J]. Int. Biodeter. Biodegr., 2013, 76: 58 | 13 | B?dtkerG, ThorstensonT, Lilleb?B L P, et al. The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems [J]. J. Ind. Microbiol. Biotechnol., 2008, 35: 1625 | 14 | LeeW, CharacklisW G. Corrosion of mild steel under anaerobic biofilm [J]. Corrosion, 1993, 49: 186 | 15 | LiuH, YuT, LiuY. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm [J]. Sci. Total Environ., 2015, 536: 116 | 16 | RathnayakeR M L D, SugaharaS, MakiH, et al. High spatial resolution analysis of the distribution of sulfate reduction and sulfide oxidation in hypoxic sediment in a eutrophic estuary [J]. Water Sci. Technol., 2017, 75: 418 | 17 | SunJ, HuS H, SharmaK R, et al. Stratified microbial structure and activity in sulfide- and methane-producing anaerobic sewer biofilms [J]. Appl. Environ. Microbiol., 2014, 80: 7042 | 18 | WanY, ZhangD, WangY, et al. Direct immobilisation of antibodies on a bioinspired architecture as a sensing platform [J]. Biosens. Bioelectron., 2011, 26: 2595 | 19 | WanY, ZhangD, WangY, et al. A 3D-impedimetric immunosensor based on foam Ni for detection of sulfate-reducing bacteria [J]. Electrochem. Commun., 2010, 12: 288 | 20 | WanY, ZhangD, HouB R. Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay [J]. Talanta, 2009, 80: 218 | 21 | WanY, WangY, WuJ J, et al. Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors [J]. Anal. Chem., 2011, 83: 648 | 22 | WanY, QiP, ZhangD, et al. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay [J]. Biosens. Bioelectron., 2012, 33: 69 | 23 | WanY, LinZ F, ZhangD, et al. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria [J]. Biosens. Bioelectron., 2011, 26: 1959 | 24 | QiP, WanY, ZhangD. Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection [J]. Biosens. Bioelectron., 2013, 39: 282 | 25 | WanY, ZhangD, HouB R. Determination of sulphate-reducing bacteria based on vancomycin-functionalised magnetic nanoparticles using a modification-free quartz crystal microbalance [J]. Biosens. Bioelectron., 2010, 25: 1847 | 26 | QiP, ZhangD, WanY, et al. A facile approach to construct versatile signal amplification system for bacterial detection [J]. Talanta, 2014, 118: 333 | 27 | QiP, ZhangD, WanY. A novel sulfate-reducing bacteria detection method based on inhibition of cysteine protease activity [J]. Talanta, 2014, 129: 270 | 28 | QiP, ZhangD, WanY. Development of an amperometric microbial biosensor based on Thiobacillus thioparus cells for sulfide and its application to detection of sulfate-reducing bacteria [J]. Electroanalysis, 2014, 26: 1824 | 29 | ZhengL B, YeX Y, QiP, et al. Fluorometric detection of sulfate-reducing bacteria via the aggregation-induced emission of glutathione-gold(I) complexes [J]. Microchim. Acta, 2019, 186: 382 | 30 | WanY, ZhangD, HouB R. Selective and specific detection of sulfate-reducing bacteria using potentiometric stripping analysis [J]. Talanta, 2010, 82: 1608 | 31 | QiP, ZhangD, WanY. Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles [J]. Anal. Chim. Acta, 2013, 800: 65 | 32 | QiP, ZhangD, WanY. Determination of sulfate-reducing bacteria with chemical conversion from ZnO nanorods arrays to ZnS arrays [J]. Sens. Actuators, 2013, 181B: 274 | 33 | QiP, ZhangD, ZengY, et al. Biosynthesis of CdS nanoparticles: a fluorescent sensor for sulfate-reducing bacteria detection [J]. Talanta, 2016, 147: 142 | 34 | ZengY, WanY, ZhangD, et al. A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III-aided cycling amplification [J]. Talanta, 2015, 132: 59 | 35 | ZengY, ZhangD, QiP, et al. Colorimetric detection of DNA by using target catalyzed DNA nanostructure assembly and unmodified gold nanoparticles [J]. Microchim. Acta, 2017, 184: 4809 | 36 | ZengY, QiP, WanY, et al. Sensitive quantitative detection of bacterial DNA based on lysozyme signal probe and Exo III-aided cycling amplification reaction [J]. Sens. Actuators, 2016, 231B: 675 | 37 | ZhengL B, QiP, ZhangD. DNA-templated fluorescent silver nanoclusters for sensitive detection of pathogenic bacteria based on MNP-DNAzyme-AChE complex [J]. Sens. Actuators, 2018, 276B: 42 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|