Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 455-460    DOI: 10.11902/1005.4537.2014.177
  本期目录 | 过刊浏览 |
镀锌钢表面高附着环氧清漆的研究
周兵1,唐囡2,张颖君1,毛亮3,王艳秋1,邵亚薇1(),孟国哲1
2. 国网江西省电力科学研究院 南昌 330077
3. 海军驻上海沪东中华造船 (集团) 有限公司代表室 上海 200129
A High Adhesive Epoxy Varnish Coating on Galvanized Steel
Bing ZHOU1,Nan TANG2,Yingjun ZHANG1,Liang MAO3,Yanqiu WANG1,Yawei SHAO1(),Guozhe MENG1
1. Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330077, China
3. Military Representative Office of Navy in Hudong-Zhonghua Shipbuilding Group, Shanghai 200129, China
全文: PDF(1000 KB)   HTML
  
摘要: 

以镀锌钢为基体,在表面制备添加不同比例磺基水杨酸的环氧清漆试样。利用附着力测试仪,测试了涂层试样的附着力,通过电化学阻抗谱研究了环氧清漆试样在3.5%NaCl溶液中的防腐蚀性能,并探讨了磺基水杨酸对涂层试样防腐蚀性能的影响机理。结果表明:随着磺基水杨酸含量的增加,涂层附着力、涂层防腐蚀性能均先增大后减小;添加3% (质量分数) 磺基水杨酸的涂层附着力最大;除浸泡初期外,磺基水杨酸含量为3%时涂层的低频阻抗模值和涂层孔隙电阻Rc最高,电荷转移电阻Rt出现得最晚,其数值也最大,即添加3%的磺基水杨酸环氧涂层在镀锌钢表面具有最佳附着力和防腐蚀性能。

关键词 镀锌钢磺基水杨酸环氧涂层附着力防腐蚀性能    
Abstract

Epoxy varnish coatings with different amount of sulfosalicylic acid were prepared on galvanized steel. The adhesion and corrosion performance of the coatings were characterized by means of pull-off adhesion tester and electrochemical impedance spectroscopy (EIS) respectively. While the effect of sulfosalicylic acid on the corrosion resistance of the coatings was also studied in 3.5%NaCl solution. The results show that with the increasing amount of sulfosalicylic acid, the adhesive strength of the coatings increases firstly, and then decreases. Among others, the coating with 3% (mass fraction) sulfosalicylic acid exhibits the highest adhesive strength, modules at low frequency and pore resistance during the immersion process only except for the initial stage; as well as the highest charge transfer resistance. These results show that the epoxy varnish coatings containing 3% sulfosalicylic acid has the best adhesion and corrosion resistance.

Key wordsgalvanized steel    sulfosalicylic acid    epoxy coating    adhesion    corrosion resistance
    
ZTFLH:     
基金资助:国家国际科技合作专项项目 (2014DFR50560),输变电设备防腐材料开发机应用关键技术研究项目 (521820130014) 和中央高校基本科研业务费专项资金项目 (HEUCF20151011) 资助

引用本文:

周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
Bing ZHOU, Nan TANG, Yingjun ZHANG, Liang MAO, Yanqiu WANG, Yawei SHAO, Guozhe MENG. A High Adhesive Epoxy Varnish Coating on Galvanized Steel. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 455-460.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.177      或      https://www.jcscp.org/CN/Y2015/V35/I5/455

Composition Formula Varnish coating 1% coating 2% coating 3% coating 4% coating
Epoxy E-44 20 20 20 20 20
Component A Mixed solvent 23 23 23 23 23
Sulfosalicyl acid 0 0.43 0.86 1.29 1.72
Component B NX-2015 14 14 14 14 14
表1  实验所用的涂料配比表
图1  清漆及1%, 2%, 3%和4%涂层试样在3.5%NaCl溶液中浸泡不同时间的Nyquist图和Bode图
图2  不同涂层试样在3.5%NaCl 溶液中的低频阻抗模值|Z|f=0.01 Hz随浸泡时间的变化
图3  EIS拟合电路
图4  不同涂层试样在3.5%NaCl溶液中的涂层孔隙电阻Rc和电荷转移电阻Rt随浸泡时间的变化
图5  不同涂层浸泡不同时间后试样的附着力
图6  镀锌钢试样在不同腐蚀介质中的Bode图
表2  镀锌钢试样在不同腐蚀介质中的|Z|f=0.01 Hz
[1] Fang J, Chen G Y, Si C X. Effects of hot galvanizingon corrosion resistance of iron-based powder metallurgy parts[J]. Powder Metall. Technol., 2008, 26(6): 452 (方景, 陈刚一, 司朝霞. 热浸镀锌对铁基粉末冶金零件耐腐蚀性的影响[J]. 粉末冶金技术, 2008, 26(6): 452)
[2] Liu S, Sun H Y, Fan H J, et al. Development of study on galvanized steel corrosion[J]. Corros. Prot., 2012, 45(12): 42 (刘栓, 孙虎元, 范汇吉等. 镀锌钢腐蚀行为的研究进展[J]. 材料保护, 2012, 45(12): 42)
[3] Chen Z Y, Mo Z L. Countermeasures of transmission tower corrosion and protection[J]. Electr. Power Constr., 2004, 25(1): 22 (程志云, 默增禄. 输电线路杆塔的腐蚀与防治对策[J]. 电力建设, 2004, 25(1): 22)
[4] Wilcox G D. Replacing chromates for the passivation of zinc surfaces[J]. Trans. Inst. Met. Finish., 2003, 81(1): 13
[5] Tan H L, Li X L, Li A Z, et al. Phosphate treatment for EG steel sheet[J]. Automob. Technol. Mater., 2004, 29(3): 19 (谭海林, 李新立, 李安忠等. 电镀锌板的磷化[J]. 汽车工艺与材料, 2004, 25(1): 22)
[6] Miller R W, Petschel Jr M, Hart R G. Automotive phosphating technology 1975~1995[J]. Met. Finish., 1994, 92(7): 13
[7] Magalhaes A A O, Margarit I C P, Mattos O R. Molybdate conversion coatings on zinc surfaces[J]. J. Electroanal. Chem., 2004, 572(2): 433
[8] Wu H J, Lu J T, Li A Z, et al. Molybdate conversion film on hot-dip galvanized steel[J]. Corros. Sci. Prot. Technol., 2009, 21(3): 295 (吴海江, 卢锦堂, 李安忠等. 热浸镀锌层上钼酸盐转化膜的腐蚀电化学性能[J]. 腐蚀科学与防护技术, 2009, 21(3): 295)
[9] Zhu D Q, van Ooij W J. Enhanced corrosion resistance of AA 2024-T3 and hot- dip galvanized steel using a mixture of bis- [triethoxysilylpropy] tetra sulfide and bis-[trimethoxy- silylpropyl] amine[J]. Electrochim. Acta, 2004, 49: 1113
[10] Wu H J, Yang F Y. Electrochemical behaviour of silane coatings on hot-dip galvanized steel[J]. China Surf. Eng., 2009, 22(5): 66 (吴海江, 杨飞英. 热镀锌钢表面硅烷膜的腐蚀电化学性能[J]. 中国表面工程, 2009, 22(5): 66)
[11] González S, Gil M A, Hernández J O, et al. Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating[J]. Prog. Org. Coat., 2001, 41: 167
[12] Ramezanzadeh B, Attar M M. Studying the effects of micro and nano sized ZnO particles on the corrosion resistance and deterioration behavior of an epoxy-polyamide coating on hot-dip galvanized steel[J]. Prog. Org. Coat., 2011, 71: 314
[13] Chen Y, Chen X, Zhang W M, et al. Tolerant coating of transmission tower protection[J]. Corros. Prot., 2012, 33(5): 426 (陈云, 陈新, 张文梅等. 输电铁塔防护用低表面处理涂料[J]. 腐蚀与防护, 2012, 33(5): 426)
[14] Ramezanzadeh B, Attar M M. An evaluation of the corrosion resistance and adhesion properties of an epoxy-nano composite on a hot-dip galvanized steel (HDG) treated by different kinds of conversion coatings[J]. Surf. Coat. Technol., 2011, 205: 4649
[15] Cao C N,Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002 (曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[16] He X K, Chen B Z, Zhang Q F. Present development and prospect of inhibitor[J]. Corros. Prot., 2003, 36(8): 1 (何新快, 陈白珍, 张钦发. 缓蚀剂的研究与进展[J]. 材料保护, 2003, 36(8): 1)
[1] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[2] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[3] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[4] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[5] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[6] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[7] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[8] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[9] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[10] 张娟,刘自强,冯涛,温世峰,陈瑞卿. 碳纳米管含量对环氧树脂涂层性能的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[11] 张山,周丽娜,简璐,王煦. 聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[12] 孙伟, 尹桂来, 刘福春, 唐囡, 韩恩厚, 万军彪, 柯伟, 邓静伟. 装载缓蚀剂的纳米SiO2对环氧涂层耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 2015, 35(5): 447-454.
[13] 曾宪光,郑兴文,龚敏,范金龙,陈雪丹. 碳钢和镀锌钢在都江堰大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 271-278.
[14] 钟西舟, 王振尧, 刘艳洁, 王彬彬, 白芳, 窦志宏. 镀锌钢在模拟海洋大气环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(2): 151-155.
[15] 郑敏聪, 李建华, 聂新辉, 李博文, 台闯. 镀锌钢接地材料在酸性土壤中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 27-32.