Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 549-558    DOI: 10.11902/1005.4537.2016.192
  研究报告 本期目录 | 过刊浏览 |
中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究
郝永胜1(),Luqman Abdullahi SANI1,宋立新1,徐国宝2,葛铁军1,方庆红1
1. 沈阳化工大学材料科学与工程学院 沈阳 110142
2. 中国科学院长春应用化学研究所 长春 130022
Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions
Yongsheng HAO1(),Abdullahi SANI Luqman1,Lixin SONG1,Guobao XU2,Tiejun GE1,Qinghong FANG1
1. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
全文: PDF(959 KB)   HTML
摘要: 

分别在中性和酸性植酸溶液中制备植酸转化膜并研究其耐蚀性。结果表明,在中性植酸溶液中得到的植酸转化膜的耐蚀性优于在酸性溶液中得到的植酸转化膜,特别是在0.06 mol/L、pH值为7.0的植酸溶液中反应1 h所得到的植酸转化膜的保护效率可达到96.7%。虽然植酸转化膜与Q235碳钢电极表面通过物理吸附相结合,但是其仍然具有优良的界面结合力。XPS结果表明,植酸具有钝化碳钢表面的功能,且最终在碳钢表面得到的植酸转化膜实际上是一层由植酸转化膜和碳钢表面的Fe2O3钝化膜构成的复合膜,二者通过协同抑制作用来保护碳钢电极不受外界腐蚀介质的侵蚀。

关键词 Q235碳钢转化膜极化曲线植酸EISXPS    
Abstract

The corrosion inhibition effect of phytic acid conversion coatings formed on Q235 carbon steel was evaluated by potentiodynamic polarization curves and electrochemistry impedance spectroscopy. The phytic acid conversion coating on carbon steel surface prepared in 0.06 mol/L pH 7.0 phytic acid solution for 1 h has the best inhibition effect with inhibition efficiency up to 96.7%. Though the phytic acid conversion coating adheres to the carbon steel surface through physi-sorption, the coating possesses fairly well adhesiveness to the substrate. SEM and XPS results show the prepared coating on carbon steel surface is a composite coating of phytic acid conversion coating and Fe2O3 passivation film, while the two components have synergistic effect.

Key wordsQ235 carbon steel    conversion coating    polarization curve    phytic acid    EIS    XPS
    
基金资助:国家自然科学基金项目 (51401132),辽宁省博士启动基金项目 (20141080),辽宁省教育厅创新团队项目(LT2015022) 和辽宁省教育厅一般项目 (L2016002) 资助

引用本文:

郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
Yongsheng HAO, Abdullahi SANI Luqman, Lixin SONG, Guobao XU, Tiejun GE, Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 549-558.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.192      或      https://www.jcscp.org/CN/Y2016/V36/I6/549

图1  在pH值为7.0的不同植酸浓度溶液中浸泡不同时间后得到的植酸转化膜的极化曲线
图2  在pH值为3.0的不同植酸浓度溶液中浸泡不同时间后得到的植酸转化膜的极化曲线
Sample No. Time / h Ecorr (Ag/AgCl) / mV Icorr / 10-7 Acm-2 -βc / mVdec-1 βa / mVdec-1 P / % θ
0.5 -228 4.4 81 13 70.7 0.70
1 -222 4.5 33 19 70.0 0.70
1# 2 -216 4.2 40 19 72.0 0.72
4 -286 1.4 46 28 90.7 0.91
6 -260 1.7 34 14 88.7 0.89
0.5 -330 4.0 137 34 73.3 0.73
1 -259 3.8 150 41 74.7 0.75
2# 2 -345 3.4 52 17 77.3 0.77
4 -230 2.4 158 37 84.0 0.84
6 -238 2.6 37 13 82.7 0.83
0.5 -265 4.0 22 26 73.3 0.73
1 -216 3.1 154 35 78.0 0.78
3# 2 -228 4.0 95 25 73.3 0.73
4 -368 3.0 105 35 80.0 0.80
6 -387 2.8 169 55 81.0 0.81
0.5 -157 2.8 49 19 81.3 0.81
1 -241 0.5 92 50 96.7 0.97
4# 2 -422 1.7 269 325 88.7 0.89
4 -274 1.7 84 139 88.7 0.89
6 -444 1.0 99 167 93.3 0.93
0.5 -176 1.5 147 19 90.0 0.90
1 -263 2.2 118 58 88.0 0.88
5# 2 -258 1.6 65 47 89.3 0.89
4 -268 1.6 90 49 89.3 0.89
6 -261 1.3 163 48 91.3 0.91
0.5 -186 3.7 42 22 75.3 0.75
1 -324 1.1 94 124 92.7 0.93
6# 2 -215 4.2 230 35 72.0 0.72
4 -244 2.4 93 69 84.0 0.84
6 -286 2.0 107 149 86.7 0.87
表1  在pH值为7.0的不同植酸浓度溶液中得到的碳钢电极表面植酸转化膜的极化曲线拟合数据
Sample No. Time / h Ecorr (Ag/AgCl) / V Icorr / 10-7Acm-2 -βc / mVdec-1 βa / mVdec-1 P / % θ
Bare steel --- -448 15.0 150 53 ? ?
0.5 -574 4.2 32 18 72.0 0.72
1 -242 3.9 38 17 74.0 0.74
1# 2 -288 3.0 49 18 80.0 0.80
4 -500 4.1 39 21 72.7 0.73
6 -611 3.3 73 38 78.0 0.78
0.5 -427 5.2 72 14 65.2 0.65
1 -511 4.8 114 22 68.0 0.68
2# 2 -339 4.6 31 9 69.3 0.69
4 -501 3.3 55 34 78.0 0.78
6 -333 1.9 67 41 87.3 0.87
0.5 -548 4.8 65 28 68.0 0.68
1 -548 4.8 42 47 68.0 0.68
3# 2 -568 4.9 73 31 67.3 0.67
4 -576 4.2 122 39 72.0 0.72
6 -537 4.1 59 32 72.7 0.73
0.5 -519 4.1 36 106 72.7 0.73
1 -388 3.9 121 18 74.0 0.74
4# 2 -531 3.4 111 27 77.3 0.77
4 -407 2.9 64 27 80.3 0.80
6 -397 3.7 85 39 75.3 0.75
0.5 -375 1.8 27 16 87.3 0.87
1 -340 1.1 53 37 92.7 0.93
5# 2 -348 2.1 51 14 86.0 0.86
4 -353 2.3 45 27 84.7 0.85
6 -386 1.4 46 26 90.6 0.91
0.5 -301 2.7 107 64 82.0 0.82
1 -340 2.3 54 41 84.7 0.85
6# 2 -352 2.3 54 41 84.7 0.85
4 -352 3.6 34 37 76.0 0.76
6 -344 3.4 51 26 77.0 0.77
表2  在pH值为3.0的不同植酸浓度溶液中得到的碳钢电极表面植酸转化膜的极化曲线拟合数据
图3  在pH值为7.0的不同植酸浓度溶液中得到的碳钢电极表面植酸转化膜的Langmuir等温方程线性拟合曲线
图4  在pH值为3.0的不同植酸浓度溶液中得到的碳钢电极表面植酸转化膜的Langmuir等温方程线性拟合曲线
pH value Reaction time / h R2 Slope Intercept / molL-1 ΔGθads / kJmol-1
7.0 0.5 0.9826 1.23 2.07×10-5 -36.7
1.0 0.9956 1.07 2.77×10-3 -24.5
2.0 0.9977 1.09 3.40×10-3 -24.0
4.0 0.9962 1.15 2.94×10-4 -29.7
6.0 0.9846 1.09 7.84×10-4 -27.7
3.0 0.5 0.9870 1.18 5.36×10-3 -22.9
1.0 0.9821 1.12 6.15×10-3 -22.6
2.0 0.9947 1.14 5.42×10-3 -22.9
4.0 0.9958 1.20 3.00×10-3 -24.3
6.0 0.9822 1.22 1.66×10-3 -25.8
表3  Langmuir等温方程拟合线性拟合数据
图5  未改性的裸碳钢表面SEM像,在最优条件下得到的植酸转化膜的表面和界面SEM像及经附着力测试后植酸转化膜表面的SEM像
图6  在最优条件下得到的植酸转化膜的XPS谱
图7  裸碳钢和在pH值为7.0 的0.06 mol/L植酸溶液中浸泡1 h后得到的植酸转化膜的EIS
图8  碳钢表面有/无植酸转化膜拟合电化学阻抗谱所用等效电路图
[1] Zhou W, Shan D, Han E-H, et al.Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy[J]. Corros. Sci., 2008, 50: 329
[2] Li Q, Xua S, Hua J, et al.The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D[J]. Electrochim. Acta, 2010, 55: 887
[3] Lin C S, Lin H C, Lin K M, et al.Formation and properties of stannate conversion coatings on AZ61 magnesium alloys[J]. Corros. Sci., 2006, 48: 93
[4] Liu X, Zhang T, Shao Y, et al.In-situ study of the formation process of stannate conversion coatings on AZ91D magnesium alloy using electrochemical noise[J]. Corros. Sci., 2010, 52: 892
[5] Joshi S, Treu B L, O'Keefe M J, et al. Characterization of cerium-based conversion coatings on Al 7075-T6 deposited from chloride and nitrate salt solutions[J]. J. Electrochem. Soc., 2011, 158: C88
[6] Chen Y K, Lu Y L, Du S G, et al.Influence of concentration of phytic acid on conversion coating on AZ91D magnesium alloy[J]. J. Funct. Mater., 2011, 42(S3): 423
[6] (陈言坤, 鲁彦玲, 杜仕国等. 植酸浓度对AZ91D镁合金表面植酸转化膜的影响[J]. 功能材料, 2011, 42(S3): 423)
[7] Du S G, Chen Y K, Lu Y L, et al.Influence of processing temperature on performance of conversion coating on AZ91D magnesium alloy prepared in phytic acid solution[J]. Corros. Sci. Prot. Technol., 2012, 24(3): 213
[7] (杜仕国, 陈言坤, 鲁彦玲等. 成膜温度对AZ91D镁合金表面植酸转化膜的影响[J]. 腐蚀科学与防护技术, 2012, 24(3): 213)
[8] Guo X, Du K, Guo Q, et al.Effect of phytic acid on the corrosion inhibition of composite film coated on Mg-Gd-Y alloy[J]. Corros. Sci., 2013, 76: 129
[9] Shi H, Han E-H, Liu F, et al.Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating[J]. Appl. Surf. Sci., 2013, 280: 325
[10] Ardelean H, Frateur I, Marcus P.Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings[J]. Corros. Sci., 2008, 50: 1907
[11] Chidiebere M A, Oguzie E E, Liu L, et al.Corrosion Inhibition of Q235 mild steel in 0.5 M H2SO4 solution by phytic acid and synergistic iodide additives[J]. Ind. Eng. Chem. Res., 2014, 53: 7670
[12] Hao C, Yin R H, Wan Z Y, et al.Electrochemical and photoelectrochemical study of the self-assembled monolayer phytic acid on cupronickel B30[J]. Corros. Sci., 2008, 50: 3527
[13] Shen S, Guo X Y, Song P, et al.Phytic acid adsorption on the copper surface: Observation of electrochemistry and Raman spectroscopy[J]. Appl. Surf. Sci., 2013, 276: 167
[14] Chen J, Song Y, Shan D, et al.Modifications of the hydrotalcite film on AZ31 Mg alloy by phytic acid: The effects on morphology, composition and corrosion resistance[J]. Corros. Sci., 2013, 74: 130
[15] Shen S, Zhu C D, Guo X Y, et al.The synergistic mechanism of phytic acid monolayers and iodide ions for inhibition of copper corrosion in acidic media[J]. RSC Adv., 2014, 4: 10597
[16] Le D P, Yoo Y H, Kim J G, et al.Corrosion characteristics of polyaniline-coated 316L stainless steel in sulphuric acid containing fluoride[J]. Corros. Sci., 2009, 51: 330
[17] Bentiss F, Lebrini M, Lagrenée M.Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis (n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system[J]. Corros. Sci., 2005, 47: 2915
[18] Chusuei C C, Goodman D W.Solid-liquid adsorption of calcium phosphate on TiO2[J]. Langmuir, 1999, 15: 7355
[19] Chusuei C C, Goodman D W.Solid-liquid adsorption of calcium phosphate on TiO2[J]. Langmuir, 1999, 15: 7355
[20] Hermas A A, Nakayama M, Ogura K.Formation of stable passive film on stainless steel by electrochemical deposition of polypyrrole[J]. Electrochim. Acta, 2005, 50: 3640
[21] Chen Y, Wang X H, Li J, et al.Long-term anticorrosion behaviour of polyaniline on mild steel[J]. Corros. Sci., 2007, 49: 3052
[1] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[2] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[5] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[6] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[8] 赖德林,孔纲,车淳山. 硅酸盐封闭对TiO2转化膜耐蚀性的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[9] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[10] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[11] 宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[12] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[13] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[15] 郭娜, 类延华, 刘涛, 常雪婷, 尹衍升. 植酸水溶液中聚吡咯涂层在Cu基体上的制备及其在腐蚀防护中的应用[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.