Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 317-325    DOI: 10.11902/1005.4537.2014.176
  本期目录 | 过刊浏览 |
植酸自组装膜对HAl77-2黄铜缓蚀性能的影响
宋芳1,陈友媛1(),常钦鹏2,彭涛3
2. 青岛市海润自来水集团有限公司 青岛 266002
3. 建设综合勘察研究设计院有限公司 北京 100007
Corrosion Inhibition of Self-assembled Monolayer of Phytic Acid for HAl77-2 Brass
Fang SONG1,Youyuan CHEN1(),Qinpeng CHANG2,Tao PENG3
1. Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
2. Qingdao Hairun Water Supply Group Co., LTD., Qingdao 266002, China
3. China Institute of Geotechnical Investigation and Surveying, Beijing 100007, China
全文: PDF(1020 KB)   HTML
摘要: 

采用动电位极化曲线法、电化学阻抗谱法和脱锌系数分析,研究了植酸浓度、自组装时间和Na2MoO4复配浓度对植酸自组装膜在HAl77-2黄铜表面缓蚀性能的影响。结果表明:HAl77-2黄铜的自腐蚀电流密度随着植酸浓度的增加呈现先下降后增加的趋势,耐蚀性先明显增强后下降;自组装时间的延长,使HAl77-2黄铜表面植酸自组装膜更加致密,超过一定时间 (16 h) 后,自组装膜反而老化脱落,表现为黄铜电极的自腐蚀电流密度增加和阻抗弧半径的下降;与Na2MoO4溶液复配后,植酸对HAl77-2黄铜的缓蚀效果明显升高,且脱锌系数分析结果表明,植酸与Na2MoO4复配,可以显著地减弱黄铜的脱锌现象。这为植酸自组装膜在黄铜腐蚀防护中的应用提供理论支撑。

关键词 植酸HAl77-2黄铜自组装膜缓蚀    
Abstract

The effect of phytic acid concentration, self-assembling time and concentration of sodium molybdate on the corrosion inhibition of the self-assembled monolayer of phytic acid for HAl77-2 brass was investigated by using potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and dezincification factor analysis etc. The results showed that with the increase of phytic acid concentration, the corrosion current density of HAl77-2 brass decreased first and then increased; with the increase of assembling time, the phytic acid layeron HAl77-2 brass became denser, however with further increase of time (for example upto 16 h), the self-assembled layer of phytic acid turned to be aged and spalled off, correspondingly, the corrosion current density increased and the impedance arc radius decreased for the brass electrode. The corrosion inhibition of the phytic acid on HAl77-2 brass was significantly increased with the addition of sodium molybdate. Besides, the synergistic action of phytic acid and sodium molybdate can weaken the dezincification of brass obviously. These results provide theoretical support for the application of the self-assembled monolayer of phytic acid in corrosion protection for brass.

Key wordsphytic acid    HAl77-2 brass    self-assembled monolayer    corrosion inhibition
    
基金资助:国家科技支撑计划项目 (2013BAJ09B04) 资助

引用本文:

宋芳,陈友媛,常钦鹏,彭涛. 植酸自组装膜对HAl77-2黄铜缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(4): 317-325.
Fang SONG, Youyuan CHEN, Qinpeng CHANG, Tao PENG. Corrosion Inhibition of Self-assembled Monolayer of Phytic Acid for HAl77-2 Brass. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 317-325.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.176      或      https://www.jcscp.org/CN/Y2015/V35/I4/317

图1  黄铜在不同浓度植酸中组装16 h的极化曲线和电化学阻抗谱
Phytic acid concentration / molL-1 Ecorr / mV Icorr / 10-7 Acm-2 η / %
0.000 -274.7 19.02 ---
0.005 -309.8 2.45 87.12
0.010 -376.7 2.15 88.70
0.015 -342.8 2.49 86.91
0.020 -249.8 6.23 67.25
0.025 -343.2 4.35 77.13
表1  黄铜在不同浓度植酸中组装16 h的极化曲线拟合参数
图2  黄铜在空白实验和不同浓度植酸中的等效电路
Phytic acid concentration / molL-1 Rs / Ωcm2 CPE1 / μFcm-2 Rf / Ωcm2 CPE2 / μFcm-2 Rct / Ωcm2 η / %
0.000 18.9 --- --- 132.88 3608 ---
0.005 28.6 11.91 8478 17.43 17876 79.82
0.010 32.0 11.47 9077 15.29 24946 85.54
0.015 29.8 12.75 7579 19.05 17679 79.59
0.020 24.6 33.84 5179 27.97 13878 74.00
0.025 22.4 25.71 5432 25.34 14265 74.71
表2  黄铜在不同浓度植酸中组装16 h的EIS拟合参数
图3  黄铜在0.010 mol/L植酸中组装不同时间的极化曲线和电化学阻抗谱
Self-assembled time / h Ecorr / mV Icorr / 10-7Acm-2 η / %
Blank -274.7 19.02 ---
12 -271.6 6.47 65.98
14 -334.5 3.23 83.02
16 -376.7 2.15 88.70
18 -323.3 3.96 79.18
20 -327.8 5.04 73.50
表3  黄铜在0.010 mol/L植酸中组装不同时间的极化曲线拟合参数
Self-assembled time / h Rs / Ωcm2 CPE1 / μFcm-2 Rf / Ωcm2 CPE2 / μFcm-2 Rct / Ωcm2 η / %
Blank 18.9 --- --- 132.88 3608 ---
12 23.0 82.77 3325 102.83 10443 65.45
14 30.3 18.79 4244 20.24 19342 81.35
16 32.0 11.47 9077 15.29 24946 85.54
18 27.2 20.38 6242 93.84 16721 78.42
20 24.8 49.38 8093 70.39 15373 76.53
表4  黄铜在0.010 mol/L植酸中组装不同时间的EIS拟合参数
Sodium molybdate concentration / mgL-1 Ecorr mV Icorr 10-7 Acm-2 η %
0 -376.7 2.15 ---
100 -271.6 0.19 91.16
250 -334.5 0.16 92.56
500 -319.8 0.21 90.23
750 -323.3 0.23 89.30
表5  黄铜在植酸复配不同浓度Na2MoO4溶液中自组装成膜后的极化曲线拟合参数
图4  黄铜在植酸复配不同浓度Na2MoO4溶液中自组装成膜后的极化曲线和电化学阻抗谱
Sodium molybdate concentration / mgL-1 Rs / Ωcm2 CPE1 / μFcm-2 Rf / Ωcm2 CPE2 / μFcm-2 Rct / Ωcm2 η / %
0 32.0 11.47 9077 15.29 24946 ---
100 39.3 8.00 13323 5.88 304963 91.82
250 42.2 7.34 14545 5.25 347921 92.83
500 34.4 8.53 10232 7.46 249960 90.02
750 34.0 10.45 9557 8.28 236455 89.45
表6  黄铜在植酸复配不同浓度Na2MoO4溶液中的EIS拟合参数
图5  黄铜在不同溶液中的极化曲线和电化学阻抗谱
Condition Cu2+ / mgL-1 Zn2+ / mgL-1 Dezinci?cation factor / Z
Blank 0.68 12.04 65.68
0.010 molL-1 phytic acid 0.30 4.63 57.25
0.010 molL-1 phytic acid+ 250 mgL-1Sodium molybdate 0.14 1.84 48.75
表7  黄铜在最适植酸组装条件下的脱锌系数
[1] Cui X L, Jiang Z Y. The application of self-assembled monolayers in metal corrosion protection[J]. Corros. Prot., 2001, 22(8): 335 (崔晓莉, 江志裕. 自组装膜技术在金属防腐蚀中的应用研究[J]. 腐蚀与防护, 2001, 22(8): 335)
[2] Li J, Ge S S. Research progress in application of self-assembly technology in metal protection[J]. Contemp. Chem. Ind., 2011, 40(2): 180 (李娟, 葛圣松. 自组装技术在金属防护中的应用研究进展[J]. 当代化工, 2011, 40(2): 180)
[3] Gu W J, Wang L Y, Wang X D, et al. The corrosion inhibition study of phytic acid on different copper surface by electrochemistry[J]. J. Shanghai Normal Univ.(Nat. Sci.), 2009, 38(5): 501 (顾玮婧, 王莉燕, 王馨迪等. 植酸在铜基表面缓蚀性能电化学研究[J]. 上海师范大学学报 (自然科学版), 2009, 38(5): 501)
[4] Wang W L, Wang G Q. Application of phytic acid in anti-corrosion for metals[J]. Chem. Ind. Times, 2012, 26(3): 47 (王伟力, 王桂清.植酸在金属缓蚀方面的应用[J]. 化工时刊, 2012, 26(3): 47)
[5] Liu H, Shen Y M. Application of non-toxic phytic acid in metal protection[J]. Appl. Chem. Ind., 2009, 38(11): 1701 (刘泓, 沈月敏. 植酸在金属防腐中的应用研究[J]. 应用化工, 2009, 38(11): 1701)
[6] Zhang H S, Yang X L, Chen X. Application of phytic acid in metal protection[J]. Corros. Sci. Prot. Technol., 2002, 14(4): 238 (张洪生, 杨晓蕾, 陈熹. 植酸在金属防护中的应用[J]. 腐蚀科学与防护技术, 2002, 14(4): 238)
[7] Hu H L, Cheng J N, Li N, et al. The application and prospects of phytic acid in metal protection[J]. Mater. Prot., 2005, 38(12): 39 (胡会利, 程瑾宁, 李宁等. 植酸在金属防护中的应用现状及展望[J]. 材料保护, 2005, 38(12): 39)
[8] Liu P H. Corrosion inhibition of self-assembly monolayer for copper and its mechanism study [D]. Shanghai: Shanghai University of Electric Power, 2012 (刘培慧. 自组装膜对铜的缓蚀性能及其机理的研究 [D]. 上海:上海电力学院, 2012)
[9] Shen S, Guo X Y, Song P. Phytic acid adsorption on the copper surface: Observation of electrochemistry and raman spectroscopy[J]. Appl. Surface Sci., 2013, 276: 167
[10] Xu Q J, Wan Z Y, Zhou G D, et al. Electrochemical and photoelectrochemical study of self-assembled monolayer of phytic acid on brass[J].Chin. J. Chem., 2008, 26: 1579
[11] Huang X T, Zhang M H, Zhao Z J, et al. A radiotracer study of dezincification of brass subjected to stress corrosion cracking[J]. J. Chin. Soc. Corros. Prot., 1992, 12(2): 101 (黄湘泰, 张美华, 赵志军等. 用放射性示踪技术研究黄铜应力腐蚀过程的脱锌[J]. 中国腐蚀与防护学报, 1992, 12(2): 101)
[12] Cao C N. Principles of Electrochemistry of Corrosion (3rd Ed.)[M]. Beijing: Chemistry Industry Press, 2008 (曹楚南. 腐蚀电化学原理 (第三版)[M]. 北京: 化学工业出版社, 2008)
[13] Kong L P, Quan Z L. Corrosion inhibition of compound SAMs of phytic acid and sodium molybdate on Cu surface[J]. J. Qingdao Univ. Sci. Technol.(Nat. Sci.), 2010, 31(2): 133 (孔令平, 全贞兰. 植酸和钼酸钠自组装膜对铜表面的缓蚀作用[J]. 青岛科技大学学报 (自然科学版), 2010, 31(2): 133)
[14] Fang J J, Xu B. Development and developing direction of molybdateinhibitor[J]. Shandong Chem. Ind., 2008, 37(11): 17 (房娟娟, 许斌. 钼酸盐缓蚀剂研究进展及发展趋势[J]. 山东化工, 2008, 37(11): 17)
[15] Wang J H, Jiang X X, Li S Z. Advances of researches on the dezincification mechanism of brass[J]. Chin. J. Mater. Res., 1999, 13(1): 1 (王吉会, 姜晓霞, 李诗卓.黄铜脱锌腐蚀机理的研究进展[J]. 材料研究学报, 1999, 13(1): 1)
[16] Li Y, Zhu Y L. Advances in researches of dezincification mechanism of brass[J]. Corros. Prot., 2006, 27(5): 222 (李勇, 朱应禄. 黄铜脱锌腐蚀的研究进展[J]. 腐蚀与防护, 2006, 27(5): 222)
[17] Zhang Q. Preparation and inhibition performancemeasurement of DG-2 copper metal inhibitor [D]. Dalian: Dalian University of Tec-hnology, 2004 (张强. DG-2型铜系金属缓蚀剂的制备及缓蚀性能的测试 [D]. 大连: 大连理工大学, 2004)
[18] Antonijevic M M, Bogdanovic G D, Radovanovic M B, et al. Influence of pH and chloride ions on electrochemical behavior of brass in alkaline[J].Int. J. Electrochem. Sci., 2009, 4: 654
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[8] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[11] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[12] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[13] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[14] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[15] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.