Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (2): 183-188    DOI: 10.11902/1005.4537.2014.055
  本期目录 | 过刊浏览 |
NiCrAlY薄膜对Sm2Co17磁体高温抗氧化性的影响
晏敏胜1,2, 何进1,2, 冒守栋2, 杨丽景2, 聂霞2, 宋振纶2(), 詹肇麟1()
1. 昆明理工大学 材料科学与工程学院 昆明 650093
2. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
Effect of NiCrAlY Coating on Oxidation Resistance of Sm2Co17 Magnets at High Temperatures
YAN Minsheng1,2, HE Jin1,2, MAO Shoudong2, YANG Lijing2, NIE Xia2, SONG Zhenlun2(), ZHAN Zhaolin1()
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(3818 KB)   HTML
摘要: 

采用直流磁控溅射方法在Sm2Co17磁体表面制备NiCrAlY薄膜,分别探讨了NiCrAlY薄膜防护的Sm2Co17 (NiCrAlY/ Sm2Co17) 磁体在500,600和700 ℃空气中的氧化行为,测试了磁体的氧化增重和磁性能,并用SEM,EDS和XRD对薄膜的微观形貌、化学成分和相组成进行表征。结果表明,NiCrAlY薄膜在600 ℃以下可明显减缓O向Sm2Co17基体的扩散速率,提高Sm2Co17磁体的抗氧化性;当氧化温度升高到700 ℃,NiCrAlY薄膜的防护效果有所下降。在高温氧化过程中,NiCrAlY薄膜选择性氧化形成富Al2O3的致密氧化膜,可提升薄膜的高温抗氧化性能。

关键词 NiCrAlY薄膜Sm2Co17磁体氧化磁性能磁控溅射    
Abstract

Air oxidation behavior of Sm2Co17 magnets coated with magnetron sputtered NiCrAlY coating was studied at 500, 600 and 700 ℃ in terms of variations of mass gains and magnetic properties. Microstructures, chemical composition, and phase constitution of the coating were analyzed by using scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The results show that the NiCrAlY coating can improve the oxidation resistance of Sm2Co17 magnets in air at 500 and 600 ℃, and its protectiveness declined with the increase of temperature up to 700 ℃. During the oxidation process, the Al atoms moved to the surface and combined with the oxygen atoms to form an oxide film on the surface of NiCrAlY coating, which can effectively maintain the oxidation resistance of NiCrAlY coating.

Key wordsNiCrAlY coating    Sm2Co17 magnet    oxidation    magnetic property    magnetron sputtering
收稿日期: 2014-04-01     
ZTFLH:  TB304  
基金资助:国家科技支撑计划项目 (2012BAE02B01),浙江省自然科学基金项目 (Q14E010014)和宁波市自然基金项目 (2012A610053) 资助
作者简介: null

晏敏胜,男,1988年生,硕士生

引用本文:

晏敏胜, 何进, 冒守栋, 杨丽景, 聂霞, 宋振纶, 詹肇麟. NiCrAlY薄膜对Sm2Co17磁体高温抗氧化性的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 183-188.
Minsheng YAN, Jin HE, Shoudong MAO, Lijing YANG, Xia NIE, Zhenlun SONG, Zhaolin ZHAN. Effect of NiCrAlY Coating on Oxidation Resistance of Sm2Co17 Magnets at High Temperatures. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 183-188.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.055      或      https://www.jcscp.org/CN/Y2015/V35/I2/183

图1  沉积在Sm2Co17磁体表面的NiCrAlY薄膜表面形貌的SEM像
图2  沉积NiCrAlY的Sm2Co17磁体断面形貌的SEM像
图3  沉积在Sm2Co17磁体表面的NiCrAlY薄膜的XRD谱
图4  沉积NiCrAlY前后的Sm2Co17磁体在空气中经不同温度氧化192 h后的截面SEM像和EDS结果
图5  沉积在Sm2Co17磁体表面的NiCrAlY薄膜在空气中经不同温度氧化192 h后的XRD谱
图6  沉积在Sm2Co17磁体表面的NiCrAlY薄膜在空气中经不同温度氧化192 h后表面形貌的SEM像
图7  沉积NiCrAlY前后的Sm2Co17磁体在空气中氧化192 h后的增重曲线
图8  沉积NiCrAlY前后Sm2Co17磁体在不同温度空气中氧化192 h后的退磁曲线
Temperature / ℃ Naked magnet NiCrAlY-coated magnets
Hcj / MAm-1 Br / T (BH )max / kJm-3 Hcj / MAm-1 Br / T (BH )max / kJm-3
25 2.69 1.08 219.93 2.68 1.06 210.57
500 0.20 0.38 8.49 2.99 1.05 199.10
600 0.02 0.13 0.48 1.98 0.96 163.93
700 0.01 0.04 0.13 2.12 0.93 133.67
表1  经不同温度氧化192 h后未沉积和沉积NiCrAlY的Sm2Co17磁体的磁性能
[1] Chen C H, Walmer M, Walmer M, et al. Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ≥400 ℃[J]. J. Appl. Phys., 1998, 83(11): 6706
[2] Walmer M S, Chen C H, Walmer M H. A new class of Sm-TM magnets for operating temperatures up to 550 ℃[J]. IEEE Trans. Magn., 2000, 36(5): 3376
[3] Liu J F, Zhang Y, Dimitrov D, et al. Microstructure and high temperature magnetic properties of Sm (Co, Cu, Fe,Zr)z(. =6.7~9.1) permanent magnets[J]. J. Appl. Phys., 1999, 85(5): 2800
[4] Chen C H, Walmer M S, Walmer M H, et al. Thermal stability of Sm-TM high temperature magnets at 300~550 ℃[J]. IEEE Trans. Magn., 2000, 36(5): 3291
[5] Chen C H, Walmer M H, Kottcamp E H, et al. Surface reaction and Sm depletion at 550 ℃ for high temperature Sm-TM magnets[J]. IEEE Trans. Magn., 2001, 37(4): 2531
[6] Liu J F, Walmer M H. Thermal stability and performance data for SmCo 2:17 high-temperature magnets on PPM focusing structures[J]. IEEE Trans. Electron Devices, 2005, 52(5): 899
[7] Liu J F, Marinescu M, Vora P, et al. Effect of temperature and vacuum on the magnetic properties and compositional changes in high temperature Sm-Co magnets[J]. J. Appl. Phys., 2009, 105(7): 07A737
[8] Kim A S. High temperature stability of SmTM magnets[J]. J. Appl. Phys., 1998, 83(11): 6715
[9] Pragnell W M, Williams A J, Evans H E. The oxidation of SmCo magnets[J]. J. Appl. Phys., 2008, 103(7): 07E127
[10] Pragnell W M, Williams A J, Evans H E. The oxidation morphology of SmCo alloys[J]. J. Alloys Compd., 2009, 487(1/2): 69
[11] Qadeer M I, Azhdar B, Hedenqvist M S, et al. Anomalous high temperature oxidation of Sm2(Fe, Co, Cu, Zr)17 particles[J]. Corros. Sci., 2012, 65: 453
[12] Yang Z, Peng X, Feng Q, et al. The mechanism of high temperature oxidation of a SmCo-based magnetic alloy[J]. Corros. Sci., 2012, 61: 72
[13] Mao S, Yan M, Nie X, et al. Evolution and effects of surface degradation layer of Sm2Co17 magnets at high temperatures[J]. J. Appl. Phys., 2014, 115(4): 043912
[14] Chen C, Walmer M H, Liu S. Thermal stability and the effectiveness of coatings for Sm-Co 2:17 high-temperature magnets at temperatures up to 550 ℃[J]. IEEE Trans. Magn., 2004, 40(4): 2928
[15] Chen C H, Huang M Q, Foster J E, et al. Effect of surface modification on mechanical properties and thermal stability of Sm-Co high temperature magnetic materials[J]. Surf. Coat. Technol., 2006, 201(6): 3430
[16] Wang Q, Zheng L, An S, et al. Thermal stability of surface modified Sm2Co17-type high temperature magnets[J]. J. Magn. Magn. Mater., 2013, 331: 245
[17] Zhao H, Peng X, Yang Z, et al. Effect of a thin Cr2O3 film on oxidation at 600 ℃ of a Sm(CobalFe0.22Cu0.08Zr0.02)7.5 alloy[J]. Surf. Coat. Technol., 2013, 226: 22
[18] Yang Z, Peng X, Feng Q, et al. High temperature oxidation and protection of a Sm2(Co, Fe, Cu, Zr)17 alloy[J]. Oxid. Met., 2013, 80(1/2): 73
[19] Li M H, Zhang Z Y, Sun X F, et al. Oxidation behavior of sputter-deposited NiCrAlY coating[J]. Surf. Coat. Technol., 2003, 165(3): 241
[20] Ren X, Wang F. High-temperature oxidation and hot-corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing[J]. Surf. Coat. Technol., 2006, 201(1/2): 30
[21] Nemirovskii Y R, Khadyev M, Kuznetsov V, et al. Fine structure and phase composition of NiCrAlY sputtered coatings[J]. Prot. Met., 2000, 36(3): 275
[22] Taylor T A, Walsh P N. Dilatometer studies of NiCrAlY coatings[J]. Surf. Coat. Technol., 2004, 188/189: 41
[23] Taylor T A, Walsh P N. Thermal expansion of MCrAlY alloys[J]. Surf. Coat. Technol., 2004, 177/178: 24
[24] Meier G H. Research on oxidation and embrittlement of intermetallic compounds in the US[J]. Werkst. Korros., 1996, 47(11): 595
[1] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[4] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[5] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[6] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[8] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[11] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[12] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[13] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[14] 王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[15] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.