Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (1): 73-78    DOI: 10.11902/1005.4537.2015.035
  本期目录 | 过刊浏览 |
纳米Al2O3掺杂AZ31B镁合金表面微弧氧化膜的结构与性能
崔学军(),杨瑞嵩,李明田
四川理工学院 材料与化学工程学院 材料腐蚀与防护四川省重点实验室 自贡 643000
Structure and Properties of a Micro-arc Oxidation Coating Coupled with Nano-Al2O3 Particles on AZ31B Magnesium Alloy
Xuejun CUI(),Ruisong YANG,Mingtian LI
Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
全文: PDF(2217 KB)   HTML
摘要: 

通过超声辅助微弧氧化的方法,在掺杂纳米Al2O3颗粒的硅酸盐溶液中制备AZ31B镁合金表面耐蚀耐磨涂层.采用SEM和XRD表征涂层的表面/截面形貌及物相组成,利用电化学方法考察基体及涂层样品在3.5%NaCl溶液中的腐蚀行为,利用球-盘干磨损实验考察膜层的室温摩擦磨损行为.结果表明:与改性前相比,掺杂Al2O3颗粒可提高陶瓷膜致密性,并促进膜层生长,表面微孔分布更均匀,尺寸更小,其物相组成主要包括MgO,MgSiO3和Al2O3;膜层的Icorr降低了一个数量级;在5和10 N载荷下的摩擦系数最低.Al2O3颗粒在超声分散和微弧的高温高压作用下,弥散分布于氧化膜及微孔内部,膜层致密化及纳米颗粒的"滚动效应"增强了膜层对基体的耐蚀耐磨防护性能.

关键词 镁合金微弧氧化纳米Al2O3耐蚀耐磨    
Abstract

A micro-arc oxidation (MAO) coating coupled with nano-Al2O3 particles was produced on AZ31B Mg alloy by a constant voltage mode in a nano-Al2O3 particles containing Na2SiO3-NaOH aqueous solution assisted with ultrasonic vibration, and then its morphology, phase composition, corrosion- and wear-resistance were investigated by scanning electron microscopy, X-ray diffraction, electrochemical method in 3.5%(mass fraction) NaCl solution, and friction and wear tester, respectively. The results show that the coupled nano-Al2O3 particles lead the MAO coating to be thicker and denser with smaller sized pores, and the coatings composed of MgO, MgSiO3, and Al2O3. The AZ31B Mg alloy covered with MAO coating coupled with nano-Al2O3 particles shows a corrosion current density about one order of magnitude lower than the one without nano-Al2O3 particles, and the former MAO coating also shows smaller friction coefficient by applied loads of 5 and 10 N respectively. Therefore, the addition of Al2O3 particles to electrolyte solution can clearly enhance the corrosion- and wear-resistance of the MAO coating. The above effect may be ascribed to the fact that the coupled nano-Al2O3 particles dispersed into the coating pores, and then enables the MAO coating to be much dense and strengthened, and in turn, enhances its corrosion- and wear-resistance.

Key wordsmagnesium alloy    micro-arc oxidation    nano-Al2O3    corrosion resistance    wearresistance
    
基金资助:四川省教育厅重点项目 (16ZA0244),国家级大学生创新创业训练计划项目 (201410622022) 和自贡市科技创新苗子工程项目 (2015CXM02) 资助

引用本文:

崔学军,杨瑞嵩,李明田. 纳米Al2O3掺杂AZ31B镁合金表面微弧氧化膜的结构与性能[J]. 中国腐蚀与防护学报, 2016, 36(1): 73-78.
Xuejun CUI, Ruisong YANG, Mingtian LI. Structure and Properties of a Micro-arc Oxidation Coating Coupled with Nano-Al2O3 Particles on AZ31B Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 73-78.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.035      或      https://www.jcscp.org/CN/Y2016/V36/I1/73

图1  掺杂Al2O3前后微弧氧化膜的表面形貌
图2  掺杂Al2O3前后微弧氧化膜的截面形貌
图3  掺杂Al2O3前后微弧氧化膜的XRD谱
图4  空白基体和微弧氧化处理样品在3.5%NaCl溶液中的极化曲线
图5  掺杂Al2O3前后的微弧氧化膜在干摩擦条件下摩擦系数与磨损时间的关系
Material ba / mVdec-1 -bc / mVdec-1 -Ecorr / mV Icorr / μAcm-2 Rp / kΩcm2
Uncoated AZ31B 42.4 125.9 1464 105.800 0.154
MAO sample without Al2O3 33.6 240.0 1523 3.400 3.240
MAO sample with Al2O3 225.6 190.8 1471 0.275 163.400
表1  图4极化曲线拟合获得的电化学参数
[1] Vladimirov B V, Krit B L, Lyudin V B, et al.Microarc oxidation of magnesium alloys: A review[J]. Surf. Eng. Appl. Electrochem., 2014, 50(3): 195
[2] Pommiers S, Frayret J, Castetbon A, et al.Alternative conversion coatings to chromate for the protection of magnesium alloys[J]. Corros. Sci., 2014, 84: 135
[3] Zhang L, Zhang J Q, Chen C F, et al.Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications[J]. Corros. Sci., 2015, 91: 7
[4] Hu R G, Zhang S, Bu J F, et al.Recent progress in corrosion protection of magnesium alloys by organic coatings[J]. Prog. Org. Coat., 2012, 73: 129
[5] Liu Y, Yang F W, Zhang Z, et al.Current status of surface treatment for magnsium alloy[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 518
[5] (刘妍, 杨富巍, 张昭等. 镁合金表面处理技术的研究进展[J]. 腐蚀科学与防护技术, 2013, 25(6): 518)
[6] Hao J M, Chen H, Zhang R J, et al.Corrosion resistances of magnesium alloys by micro-arc oxidation and anodic oxidation[J]. Mater. Prot., 2003, 36(1): 20
[6] (郝建民, 陈宏, 张荣军等. 微弧氧化和阳极氧化处理镁合金的耐蚀性对比[J]. 材料保护, 2003, 36(1): 20)
[7] Cui X J, Liu C H, Yang R S, et al.Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism[J]. Corros. Sci., 2013, 76: 474
[8] Yang H Y, Guo X W, Chen X B, et al.A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D[J]. Corros. Sci., 2014, 79: 41
[9] Song Z W, Xie Z H, Yu G, et al.A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy[J]. J. Alloys Compd., 2015, 623: 274
[10] Liu F, Shan D Y, Song Y W, et al.Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation[J]. Corros. Sci.,2011, 53: 3845
[11] Dong K H, Sun S, Song Y W, et al.Optimization of electrical parameters of micro-arc oxidation using novel fluotitanate electrolyte on Mg alloys[J]. Chin. J. Nonferrous Met., 2014, 24(9): 2220
[11] (董凯辉, 孙硕, 宋影伟等. 镁合金新型氟钛酸盐电解液体系微弧氧化电参数的优化[J]. 中国有色金属学报, 2014, 24(9): 2220)
[12] Ivanou D K, Starykevich M, Lisenkov A D, et al.Plasma anodized ZE41 magnesium alloy sealed with hybrid epoxy-silane coating[J]. Corros. Sci., 2013, 73: 300
[13] Li Z, Jing X, Yuan Y, et al.Composite coatings on a Mg-Li alloy prepared by combined plasma electrolytic oxidation and sol-gel techniques[J]. Corros. Sci., 2012, 63: 358
[14] Cui X J, Lin X Z, Liu C H, et al.Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J]. Corros. Sci., 2015, 90: 402
[15] Gao Z Y, Pan F S, Tang A T, et al.Investigation on corrosion and wear resistance of AZ31 magnesium alloy by single layer nanocrystalline Al2O3 thin film[J]. J. Funct. Mater., 2013, 8(44): 1
[15] (高正源, 潘复生, 汤爱涛等. AZ31镁合金表面纳米Al2O3涂层的耐蚀耐磨性能研究[J]. 功能材料, 2013, 8(44): 1)
[16] Tao Y S, Xiong T Y, Sun C, et al.Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D ma- gnesium alloy[J]. Appl. Surf. Sci., 2009, 256: 261
[17] Luo H H, Cai Q Z, He J, et al.Preparation and properties of composite ceramic coating containing Al2O3-ZrO2-Y2O3 on AZ91D magnesium alloy by plasma electrolytic oxidation[J]. Curr. Appl. Phys., 2009, 9: 1341
[18] Liu P, Pan X, Yang W H, et al.Al2O3-ZrO2 ceramic coatings fabricated on WE43 magnesium alloy by cathodic plasma electrolytic deposition[J]. Mater. Lett., 2012, 70: 16
[19] Zhang D F, Gou Y N, Liu Y P, et al.A composite anodizing coating containing superfine Al2O3 particles on AZ31 magnesium alloy[J]. Surf. Coat. Technol., 2013, 236: 52
[20] Mandelli A, Bestetti M, Da Forno A, et al.A composite coating for corrosion protection of AM60B magnesium alloy[J]. Surf. Coat. Technol., 2011, 205: 4459
[21] Liu Y P, Duan L H, Ma S X, et al.Influence of additions of powerders in electrytical solution on microstructure and corrosion protection of ceramic coatings formed on magnesium alloy during micro-arc oxidation[J]. J. Chin. Soc. Corros. Prot., 2007, 27(4): 202
[21] (刘亚萍, 段良辉, 马淑仙等. 粉末对镁合金微弧氧化陶瓷膜的显微结构及其耐蚀性的影响[J]. 中国腐蚀与防护学报, 2007, 27(4): 202)
[22] Qu L J, Li M Q, Liu M, et al.In vitro degradation of medical magnesium alloy coated by ultrasonic micro-arc oxidation[J]. Rare Met. Mat. Eng., 2014, 43(S1): 96
[22] (曲立杰, 李慕勤, 刘苗等. 超声-微弧氧化医用镁合金体外降解性研究[J]. 稀有金属材料与工程, 2014, 43(S1): 96)
[23] Liu Y P, Li T T, Li J, et al.Growth dynamics process of anodic film formed on magnesium alloy[J]. Rare Met. Mat. Eng., 2014, 43(4): 1013
[23] (刘渝萍, 李婷婷, 李晶等. 镁合金阳极氧化膜的生长动力学过程[J]. 稀有金属材料与工程, 2014, 43(4): 1013)
[24] Yagi S, Sengoku A, Kubota K, et al.Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte[J]. Corros. Sci., 2012, 57: 74
[25] Li J, Zhang H C, Gao Y Z.Preparation and micro-tribological behavior of hydrophobic/superhydrophobic surface on magnesium alloy[J]. J. Funct. Mater., 2012, 43(22): 3063
[25] (李杰, 张会臣, 高玉周. MB8镁合金疏水/超疏水表面制备与微摩擦特性研究[J]. 功能材料, 2012, 43(22): 3063)
[26] Shanthi M, Lim C Y H, Lu L. Effects of grain size on the wear of recycled AZ91 Mg[J]. Tribol. Int., 2007, 40(2): 335
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[3] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[8] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[9] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[11] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[12] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[13] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[14] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[15] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.