Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (2): 164-170    
  研究报告 本期目录 | 过刊浏览 |
国产825合金的耐腐蚀性能研究
冯 勇1 何德良1 龚德胜2 李 菲1 吴建新2
1. 湖南大学化学化工学院 长沙 410082;
2. 岳阳长岭设备研究所有限公司 岳阳 414014
Corrosion Resistance Properties of Domestic 825 Alloy
FENG Yong1, HE Deliang1, GONG Desheng2, LI Fei1, WU Jianxin2
1. College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China;
2. Yueyang Changling Equipment Research Institute Co. Ltd., Yueyang 414014, China
全文: PDF(3569 KB)  
摘要: 采用腐蚀失重法、电化学测试和慢应变速率拉伸应力腐蚀研究了国产825合金在HCl、NaOH和NaCl溶液中的腐蚀行为,并采用金相显微镜和扫描电镜(SEM)对腐蚀后的样品进行观察。结果表明,国产825合金在HCl溶液中浸泡7 d后发生了明显的腐蚀,腐蚀速率随HCl浓度的增加而增大,而在NaOH和NaCl溶液中浸泡5个月后未发生明显腐蚀,并且在HCl、NaOH和NaCl溶液中合金的腐蚀电流随溶液浓度增加而增大。慢应变速率拉伸应力腐蚀结果表明在HCl、NaOH和NaCl溶液中合金的应力腐蚀敏感性很小,因此,一般情况下不会发生应力腐蚀开裂。
关键词 国产825合金腐蚀失重电化学测试应力腐蚀开裂    
Abstract:Corrosion behaviors of domestic 825 alloy in HCl, NaOH and NaCl solutions were studied by corrosion mass loss, electrochemical test and stress corrosion at slow strain rate. Meanwhile, the corrosion morphologies were investigated by optical microscopy and scanning electron microscopy (SEM). The results showed that the corrosion behavior of the domestic 825 alloy was not obvious after immersion in NaOH and NaCl solutions for 5 months. However, it corroded evidently after immersion in HCl solution for 7 d, and the corrosion rate in HCl solution increased with increasing HCl concentration. Furthermore, the corrosion current of the domestic 825 alloy increased with increasing concentration of HCl, NaOH and NaCl solution, respectively. The stress corrosion tests at slow strain rate showed that the domestic 825 alloy had no stress corrosion susceptibility in the HCl, NaOH and NaCl solution, thus no stress corrosion crack would occur under normal circumstance.
Key wordsdomestic 825 alloy    corrosion mass loss    electrochemical test    stress corrosion crack
    
ZTFLH:  TG178  

引用本文:

冯 勇 何德良 龚德胜 李 菲 吴建新. 国产825合金的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2013, 33(2): 164-170.
. Corrosion Resistance Properties of Domestic 825 Alloy. Journal of Chinese Society for Corrosion and protection, 2013, 33(2): 164-170.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I2/164

[1] Ge L, Chen C F, Zheng S Q, et al. Corrosion behavior of nickel based alloy 825 in high temperature and high pressure H2S/ CO2 environments [J]. Corros. Prot., 2009, 30(10): 708-716
(戈磊, 陈长风, 郑树启等. 高温高压H2S/CO2 环境中镍基合金825的腐蚀行为 [J]. 腐蚀与防护, 2009, 30(10): 708-716)
[2] Raul B R, Paul C. Nickel alloys for corrosive environments [J]. Adv. Mater. Process., 2000, 157(2): 37-42
[3] Yang R C, Shu J, Chen K, et al. Research on valence electronst ructures and properties of Ni-based corrosion resistant alloy [J]. Trans. Nonferrous Met. Soc. Chin., 2007, 16: 84-87
[4] Yang R C, Wang H, Zheng L P, et al. Characteristics and research trends of high performance ni-base corrosion resistant alloys [J]. Mater. Rev., 2001, 15(11): 21-23
(杨瑞成, 王晖, 郑丽平等. 高性能Ni基耐蚀合金的特性和研究动向 [J]. 材料导报, 2001, 15(11): 21-23)
[5] Sun H P, Hu C S, Li G H, et al. Development of corrosion resistant ni-base alloys NSS334 [J]. Chin. Metall., 2007, 17(5): 35-38
(孙槐平, 胡传顺, 李光辉等. 镍基耐蚀合金NSS334的研制 [J]. 中国冶金, 2007, 17(5): 35-38)
[6] Ma G Y. Corrosion resistant analysis of nickel and nickel alloy [J]. Chem. Equip. Technol., 2007, 28(1): 71-74
(马国印. 镍和镍合金耐蚀性分析 [J]. 化工装备技术, 2007, 28(1): 71-74)
[7] Zhang S L, Zhang H B. Incoloy 825 corrosion resistant ally [J]. Sichuan Metall., 2004, 26(6): 28-30
(张菽浪, 张红斌. Incoloy 825耐蚀合金 [J]. 四川冶金, 2004, 26(6): 28-30)
[8] Wang C, Ju S H, Xun S L, et al. Progress in research on nickel-based corrosion resistant alloys [J]. Mater. Rev., 2009, 23(2): 71-76
(王成, 巨少华, 荀淑玲等. 镍基耐蚀合金研究进展 [J]. 材料导报, 2009, 23(2): 71-76)
[9] Le Canut J M, Maximovitch S, Dalard F. Electrochemical characterisation of nickel-based alloys in sulphate solutions at 320oC [J]. J. Nucl. Mater., 2004, 334(1): 13-27
[10] Yang I J. Electrochemical study of nickel-based alloys in high temperature water chemistry [J]. Mater. Chem. Phys., 1997, 49(1): 50-55
[11] Li D G, Feng Y R, Bai Z Q, et al. Characteristics of CO2 corrosion scale formed on N80 steel in stratum water with saturated CO2 [J]. Appl. Surf. Sci., 2007, 253(20): 8371-8376
[12] Ren C, Liu D, Bai Z, et al. Corrosion behavior of oil tube steel in simulant solution with hydrogen sulfide and carbon dioxide [J]. Mater. Chem. Phys., 2005, 93(2): 305-309
[13] Zhang G X, Lang Y P. Research and development of domestic high alloy 825 steel pipe and plate materials [J]. Pet. Refinery Eng., 2009, 39(6): 16-19
(张国信, 郎宇平, 国产825钢管和钢板高合金材料研制及开发 [J]. 炼油技术与工程, 2009, 39(6): 16-19)
[14] HB7235-95. Slow strain rate stress corrosion test methods [S]. Beijing: Aviation Industry Corporation of China, 1995
(HB7235-95. 慢应变速率应力腐蚀试验方法 [S]. 北京: 中国航空工业总公司, 1995)
[15] Cabello G, Funkhouser G, Cassidy J, et al. Inhibition by CO of the corrosion of Fe, Ni, and their alloys in concentrated HCl solutions [J]. J. Electroanal. Chem., 2011, 662(1): 150-156
[16] Al-Fozan S A, Malik A U. Effect of seawater level on corrosion behavior of different alloys [J]. Desalination, 2008, 228(1-3): 61-67
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[7] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[9] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[12] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] 崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[15] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.