Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 261-266    DOI: 10.11902/1005.4537.2016.038
  本期目录 | 过刊浏览 |
实时监测技术研究薄液膜下电偶腐蚀的机理
刘艳洁1,王振尧1(),王彬彬1,曹岩2,霍阳2,柯伟1
1 中国科学院金属研究所 沈阳 110016
2 辽宁红沿河核电有限公司 大连 116319
Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies
Yanjie LIU1,Zhenyao WANG1(),Binbin WANG1,Yan CAO2,Yang HUO2,Wei KE1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Liaoning Hongyanhe Nuclear Power Co., Ltd, Dalian 116319, China
全文: PDF(1358 KB)   HTML
摘要: 

采用大气腐蚀检测技术 (ACM)、零电阻电流技术 (ZRA) 以及电化学阻抗谱技术 (EIS) 对2024铝合金与316L不锈钢在薄液膜下的电偶腐蚀行为进行了实时监测。结果表明,电偶腐蚀的过程可分为诱导期、加速期和减速期3个阶段。随着两电极之间距离的减小,电偶腐蚀会快速诱发,且腐蚀速率迅速增加,但电偶腐蚀的加速期变短。

关键词 实时监测铝合金不锈钢电偶腐蚀    
Abstract

Atmospheric corrosion monitor (ACM), zero resistance amperemeter (ZRA) and electrochemical impedance spectroscopy (EIS) were applied to detect deeply the real-time galvanic corrosion of the couple of 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film. The galvanic corrosion process could be divided into three phases: initial phase, acceleration phase and deceleration phase. The smaller the insulative space between the two different materials is, the shorter the initial and acceleration phases are.

Key wordsreal-time monitoring    Al-alloy    stainless steel    galvanic corrosion
收稿日期: 2016-03-23     
基金资助:国家自然科学基金 (51671197)

引用本文:

刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
Yanjie LIU, Zhenyao WANG, Binbin WANG, Yan CAO, Yang HUO, Wei KE. Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 261-266.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.038      或      https://www.jcscp.org/CN/Y2017/V37/I3/261

Material Si Cu Mn Zn Mg Al C P S Ni Cr Mo Fe
2024 alloy 0.50 4.18 0.30 0.30 1.30~1.80 Bal. --- --- --- --- --- --- 0.50
316L SS ≤1.00 --- ≤2.00 --- --- --- ≤0.03 ≤0.035 ≤0.03 10.0~14.0 16.0~18.0 2.0~3.0 Bal.
表1  AA2024铝合金与316L不锈钢的化学成分
图1  不同间距的偶接试样示意图
Test process Timemin Temperature℃
Step 1 Fog 30 35
Step 2 Dry 90 35
Step 3 Subcycle Step 4~5 Repeat 11 X
Step 4 Humidity (RH≥95%) 40 35
Step 5 Dry 80 35
表2  电偶腐蚀加速实验每周期的实验参数
图2  间距为0.3 mm的电偶试样在电偶腐蚀的第1,13,20和27周期期间的电偶电流随腐蚀时间的变化
图3  ZRA所测不同间距的电偶试样的电偶电流随腐蚀时间的变化
图4  腐蚀不同时间的间距为0.3 mm的电偶试样的Bode图 (相位角vs频率)
图5  腐蚀不同时间的间距为0.3 mm的电偶试样的Bode图 (|Z | vs频率)
图6  腐蚀不同时间的间距为1 mm的电偶试样的Bode图 (相位角vs频率)
图7  腐蚀不同时间的间距为1 mm的电偶对试样的Bode图 (|Z | vs频率)
图8  腐蚀不同时间的间距为3 mm的电偶试样的Bode图 (相位角vs频率)
[1] Bellucci F.Galvanic corrosion between nonmetallic composites and metals: I effect of metal and of temperature[J]. Corrosion, 1991, 47: 808
[2] Moshrefi R, Ghassem Mahjani M, Ehsani A, et al.A study of the galvanic corrosion of titanium/L 316 stainless steel in artificial seawater using electrochemical noise (EN) measurements and electrochemical impedance spectroscopy (EIS)[J]. Anti-Corros. Methods Mater., 2011, 58: 250
[3] Mansfeld F.Area relationships in galvanic corrosion[J]. Corrosion, 1971, 27: 436
[4] Palani S, Hack T, Deconinck J, et al.Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination[J]. Corros. Sci., 2014, 78: 89
[5] Lee J M.Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochim. Acta, 2006, 51: 3256
[6] Bellucci F.Galvanic corrosion between nonmetallic composites and metals II. Effect of area ratio and environmental degradation[J]. Corrosion, 1992, 48: 281
[7] Pryor M J, Keir D S.Galvanic corrosion II. Effect of pH and dissolved oxygen concentration on the aluminum-steel couple[J]. J. Electrochem. Soc., 1958, 105: 629
[8] Song G L, Johannesson B, Hapugoda S, et al.Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J]. Corros. Sci., 2004, 46: 955
[9] Mouanga M, Puiggali M, Tribollet B, et al.Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 88: 6
[10] Krüger L, Mandel M.Electrochemical behaviour of aluminium/steel rivet joints[J]. Corros. Sci., 2011, 53: 624
[11] Feng Z C, Frankel G S.Galvanic test panels for accelerated corrosion testing of coated al alloys: part 2-measurement of galvanic interaction[J]. Corrosion, 2014, 70: 95
[12] Yamashita M, Nagano H, Oriani R.Dependence of corrosion potential and corrosion rate of a low-alloy steel upon depth of aqueous solution[J]. Corros. Sci., 1998, 40: 1447
[13] Schneider M, Kremmer K, L?mmel C, et al.Galvanic corrosion of metal/ceramic coupling[J]. Corros. Sci., 2014, 80: 191
[14] Thébault F, Vuillemin B, Oltra R, et al.Modeling bimetallic corrosion under thin electrolyte films[J]. Corros. Sci., 2011, 53: 201
[15] Wang L, Xuan W F, Mu X L.Corrosion performance of 2A11 aluminium alloy coupled with carbon steel in accelerated natural environmental condition[J]. Surf. Technol., 2011, 40(5): 1
[15] (王玲, 宣卫芳, 牟献良. 2A11铝合金/碳钢偶接件在强化自然环境条件下的腐蚀特性[J]. 表面技术, 2011, 40(5): 1)
[16] Zhou H R, Li X G, Ma J, et al.Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Mater. Sci. Eng., 2009, B162: 1
[1] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[4] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[6] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[9] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[10] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[12] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[13] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[14] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[15] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.