Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 261-266    DOI: 10.11902/1005.4537.2016.038
  本期目录 | 过刊浏览 | 高级检索 |
实时监测技术研究薄液膜下电偶腐蚀的机理
刘艳洁1,王振尧1(),王彬彬1,曹岩2,霍阳2,柯伟1
1 中国科学院金属研究所 沈阳 110016
2 辽宁红沿河核电有限公司 大连 116319
Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies
Yanjie LIU1,Zhenyao WANG1(),Binbin WANG1,Yan CAO2,Yang HUO2,Wei KE1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Liaoning Hongyanhe Nuclear Power Co., Ltd, Dalian 116319, China
下载:  HTML  PDF(1358KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用大气腐蚀检测技术 (ACM)、零电阻电流技术 (ZRA) 以及电化学阻抗谱技术 (EIS) 对2024铝合金与316L不锈钢在薄液膜下的电偶腐蚀行为进行了实时监测。结果表明,电偶腐蚀的过程可分为诱导期、加速期和减速期3个阶段。随着两电极之间距离的减小,电偶腐蚀会快速诱发,且腐蚀速率迅速增加,但电偶腐蚀的加速期变短。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘艳洁
王振尧
王彬彬
曹岩
霍阳
柯伟
关键词:  实时监测  铝合金  不锈钢  电偶腐蚀    
Abstract: 

Atmospheric corrosion monitor (ACM), zero resistance amperemeter (ZRA) and electrochemical impedance spectroscopy (EIS) were applied to detect deeply the real-time galvanic corrosion of the couple of 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film. The galvanic corrosion process could be divided into three phases: initial phase, acceleration phase and deceleration phase. The smaller the insulative space between the two different materials is, the shorter the initial and acceleration phases are.

Key words:  real-time monitoring    Al-alloy    stainless steel    galvanic corrosion
收稿日期:  2016-03-23                出版日期:  2017-07-04      发布日期:  2017-07-04      期的出版日期:  2017-07-04
基金资助: 国家自然科学基金 (51671197)
引用本文:    
刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
Yanjie LIU,Zhenyao WANG,Binbin WANG,Yan CAO,Yang HUO,Wei KE. Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 261-266.
链接本文:  
http://www.jcscp.org/CN/10.11902/1005.4537.2016.038  或          http://www.jcscp.org/CN/Y2017/V37/I3/261
Material Si Cu Mn Zn Mg Al C P S Ni Cr Mo Fe
2024 alloy 0.50 4.18 0.30 0.30 1.30~1.80 Bal. --- --- --- --- --- --- 0.50
316L SS ≤1.00 --- ≤2.00 --- --- --- ≤0.03 ≤0.035 ≤0.03 10.0~14.0 16.0~18.0 2.0~3.0 Bal.
表1  AA2024铝合金与316L不锈钢的化学成分
图1  不同间距的偶接试样示意图
Test process Timemin Temperature℃
Step 1 Fog 30 35
Step 2 Dry 90 35
Step 3 Subcycle Step 4~5 Repeat 11 X
Step 4 Humidity (RH≥95%) 40 35
Step 5 Dry 80 35
表2  电偶腐蚀加速实验每周期的实验参数
图2  间距为0.3 mm的电偶试样在电偶腐蚀的第1,13,20和27周期期间的电偶电流随腐蚀时间的变化
图3  ZRA所测不同间距的电偶试样的电偶电流随腐蚀时间的变化
图4  腐蚀不同时间的间距为0.3 mm的电偶试样的Bode图 (相位角vs频率)
图5  腐蚀不同时间的间距为0.3 mm的电偶试样的Bode图 (|Z | vs频率)
图6  腐蚀不同时间的间距为1 mm的电偶试样的Bode图 (相位角vs频率)
图7  腐蚀不同时间的间距为1 mm的电偶对试样的Bode图 (|Z | vs频率)
图8  腐蚀不同时间的间距为3 mm的电偶试样的Bode图 (相位角vs频率)
[1] Bellucci F.Galvanic corrosion between nonmetallic composites and metals: I effect of metal and of temperature[J]. Corrosion, 1991, 47: 808
Bellucci F.Galvanic corrosion between nonmetallic composites and metals: I effect of metal and of temperature[J]. Corrosion, 1991, 47: 808
[2] Moshrefi R, Ghassem Mahjani M, Ehsani A, et al.A study of the galvanic corrosion of titanium/L 316 stainless steel in artificial seawater using electrochemical noise (EN) measurements and electrochemical impedance spectroscopy (EIS)[J]. Anti-Corros. Methods Mater., 2011, 58: 250
Moshrefi R, Ghassem Mahjani M, Ehsani A, et al.A study of the galvanic corrosion of titanium/L 316 stainless steel in artificial seawater using electrochemical noise (EN) measurements and electrochemical impedance spectroscopy (EIS)[J]. Anti-Corros. Methods Mater., 2011, 58: 250
[3] Mansfeld F.Area relationships in galvanic corrosion[J]. Corrosion, 1971, 27: 436
Mansfeld F.Area relationships in galvanic corrosion[J]. Corrosion, 1971, 27: 436
[4] Palani S, Hack T, Deconinck J, et al.Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination[J]. Corros. Sci., 2014, 78: 89
Palani S, Hack T, Deconinck J, et al.Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination[J]. Corros. Sci., 2014, 78: 89
[5] Lee J M.Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochim. Acta, 2006, 51: 3256
Lee J M.Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochim. Acta, 2006, 51: 3256
[6] Bellucci F.Galvanic corrosion between nonmetallic composites and metals II. Effect of area ratio and environmental degradation[J]. Corrosion, 1992, 48: 281
Bellucci F.Galvanic corrosion between nonmetallic composites and metals II. Effect of area ratio and environmental degradation[J]. Corrosion, 1992, 48: 281
[7] Pryor M J, Keir D S.Galvanic corrosion II. Effect of pH and dissolved oxygen concentration on the aluminum-steel couple[J]. J. Electrochem. Soc., 1958, 105: 629
Pryor M J, Keir D S.Galvanic corrosion II. Effect of pH and dissolved oxygen concentration on the aluminum-steel couple[J]. J. Electrochem. Soc., 1958, 105: 629
[8] Song G L, Johannesson B, Hapugoda S, et al.Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J]. Corros. Sci., 2004, 46: 955
Song G L, Johannesson B, Hapugoda S, et al.Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J]. Corros. Sci., 2004, 46: 955
[9] Mouanga M, Puiggali M, Tribollet B, et al.Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 88: 6
Mouanga M, Puiggali M, Tribollet B, et al.Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 88: 6
[10] Krüger L, Mandel M.Electrochemical behaviour of aluminium/steel rivet joints[J]. Corros. Sci., 2011, 53: 624
Krüger L, Mandel M.Electrochemical behaviour of aluminium/steel rivet joints[J]. Corros. Sci., 2011, 53: 624
[11] Feng Z C, Frankel G S.Galvanic test panels for accelerated corrosion testing of coated al alloys: part 2-measurement of galvanic interaction[J]. Corrosion, 2014, 70: 95
Feng Z C, Frankel G S.Galvanic test panels for accelerated corrosion testing of coated al alloys: part 2-measurement of galvanic interaction[J]. Corrosion, 2014, 70: 95
[12] Yamashita M, Nagano H, Oriani R.Dependence of corrosion potential and corrosion rate of a low-alloy steel upon depth of aqueous solution[J]. Corros. Sci., 1998, 40: 1447
Yamashita M, Nagano H, Oriani R.Dependence of corrosion potential and corrosion rate of a low-alloy steel upon depth of aqueous solution[J]. Corros. Sci., 1998, 40: 1447
[13] Schneider M, Kremmer K, L?mmel C, et al.Galvanic corrosion of metal/ceramic coupling[J]. Corros. Sci., 2014, 80: 191
Schneider M, Kremmer K, L?mmel C, et al.Galvanic corrosion of metal/ceramic coupling[J]. Corros. Sci., 2014, 80: 191
[14] Thébault F, Vuillemin B, Oltra R, et al.Modeling bimetallic corrosion under thin electrolyte films[J]. Corros. Sci., 2011, 53: 201
Thébault F, Vuillemin B, Oltra R, et al.Modeling bimetallic corrosion under thin electrolyte films[J]. Corros. Sci., 2011, 53: 201
[15] Wang L, Xuan W F, Mu X L.Corrosion performance of 2A11 aluminium alloy coupled with carbon steel in accelerated natural environmental condition[J]. Surf. Technol., 2011, 40(5): 1
Wang L, Xuan W F, Mu X L.Corrosion performance of 2A11 aluminium alloy coupled with carbon steel in accelerated natural environmental condition[J]. Surf. Technol., 2011, 40(5): 1
[15] (王玲, 宣卫芳, 牟献良. 2A11铝合金/碳钢偶接件在强化自然环境条件下的腐蚀特性[J]. 表面技术, 2011, 40(5): 1)
[16] Zhou H R, Li X G, Ma J, et al.Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Mater. Sci. Eng., 2009, B162: 1
[15] (王玲, 宣卫芳, 牟献良. 2A11铝合金/碳钢偶接件在强化自然环境条件下的腐蚀特性[J]. 表面技术, 2011, 40(5): 1)
[1] 戴芸,刘胜胆,邓运来,张新明. 7020铝合金在3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[2] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[3] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[4] 周和荣,胡碧华,姚望,洪新培,宋述鹏. 铝合金阳极氧化层在江津污染大气环境中暴露腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 273-278.
[5] 赵欣,胡裕龙,董赋,张晓东,王智峤. 湿态电绝缘对电偶腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[6] 林晓冬,彭群家,韩恩厚,柯伟. 核级不锈钢的热老化研究进展[J]. 中国腐蚀与防护学报, 2017, 37(2): 81-92.
[7] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[8] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[9] 朱明,周嘏玥,张慧慧. 316不锈钢在添加微量稀土元素硝酸熔盐中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 16-22.
[10] 沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
[11] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[12] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[13] 白子恒,黄运华,李晓刚,杨浪,董超芳,颜利丹,肖葵. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[14] 孙朝晖,Masoumeh Moradi,杨丽景,Robabeh Bagheri,宋振纶,陈艳霞. 越南芽孢杆菌对2507双相不锈钢加速腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 659-664.
[15] 马景灵,任凤章,王广欣,熊毅,文九巴. Al-Mg-Sn-Ga铝阳极合金电化学性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 421-426.
[1] Qiurong Li; Limin Wang. Effect of NaCl Deposit on the Corrosion Behavior of CuCr Alloy at 700℃~900℃[J]. J Chin Soc Corr Pro, 2005, 25(5): 291 -294 .
[2] Guangping Sun; Shusheng Jia; Xianyong Zhu; Bo Hao; Yan Yu. The Dynamic Mechanical Behavior of Water-Solubilized Damping Coating with Interpenetrating Polymer Networks of Core-Shell Type of Thermoset Polyacrylic[J]. J Chin Soc Corr Pro, 2004, 24(1): 41 -44 .
[3] Jianping Li. Static Corrosion of Oil Thimble Used in Tarim Oil Field[J]. J Chin Soc Corr Pro, 2004, 24(4): 230 -233 .
[4] Dongmei Zhang; Meidi Zhao. CITATION STATISTICS AND ANALYSIS OF FROM 1996-2000[J]. J Chin Soc Corr Pro, 2002, 22(3): 189 -191 .
[5] . HIGH VOLTAGE ANODIZATION BEHAVIOUR OFALUMINUM IN MIXED ELECTROLYTES OFPHOSPHORIC ACID AND SODIUM TUNGSTATE[J]. J Chin Soc Corr Pro, 2001, 21(4): 234 -239 .
[6] Cheng Sun; Enhou Han. EFFECTS OF SRB ON CORROSION OF 1Cr18Ni9tI STAINLEFF STEEL IN SOILS OF Cl-[J]. J Chin Soc Corr Pro, 2003, 23(1): 46 -51 .
[7] Ronggang Hu; Ronggui Du; Minhua Shao. IN-SITU STM STUDY ON DYNAMIC BEHAVIOR OF CORROSIONAND INHIBITION OF REBAR STEEL IN DIFFERENTSIMULATED CONCRETE PORE SOLUTION[J]. J Chin Soc Corr Pro, 2003, 23(6): 321 -325 .
[8] Shuilin Wu; Zhenduo Cui; Chunfu Li. STUDY ON CORROSION OF OIL TUBES IN CARBONDIOXIDE SATURATED CRUDE OIL/WATER MIXTURES[J]. J Chin Soc Corr Pro, 2003, 23(6): 340 -344 .
[9] TONG Jibin RAO Sixian ZHU Liqun ZHONG Qunpeng. CORRELATION BETWEEN THE PITTING DEPTH OF LY12CZ WITH OR WITHOUT STRESS[J]. J Chin Soc Corr Pro, 2009, 29(6): 504 -508 .
[10] Qian Ming Huang Yongchag Wu Yihua (Shanghai Jiao-Tong University). A QUANTITATIVE XPS METHOD STUDY ON AlZn-In SACRIFICIAL ANODE SURFACE[J]. J Chin Soc Corr Pro, 1990, 10(4): 339 -345 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed