Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 415-422    DOI: 10.11902/1005.4537.2014.188
  本期目录 | 过刊浏览 |
苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能
苏铁军1(),罗运柏2,李克华3,李凡修3,邓仕英1,习伟1
2. 武汉大学化学与分子科学学院 武汉 430072
3. 长江大学化学与环境工程学院 荆州 434023
Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid
Tiejun SU1(),Yunbai LUO2,Kehua LI3,Fanxiu LI3,Shiying DENG1,Wei XI1
1. College of Technology and Engineering, Yangtze University, Jingzhou 434020, China
2. College of Chemistry and Molecule Science, Wuhan University, Wuhan 430072, China
3. College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
全文: PDF(2412 KB)   HTML
  
摘要: 

采用静态失重、动电位极化、电化学阻抗等方法研究了两种苯并咪唑-N-曼尼希碱 (PAB和PPB) 在盐酸介质中对N80钢的缓蚀性能。结果表明:两种缓蚀剂均为混合控制型缓蚀剂,都能自发吸附于碳钢表面,其行为符合Langmuir吸附等温式。PPB的缓蚀性能好于PAB,这与量子化学计算和分子动力学模拟的结论相吻合。

关键词 苯并咪唑衍生物缓蚀剂电化学测试量子化学计算分子动力学模拟    
Abstract

The inhibition performance of two compounds of benzimidazole N-mannich base namely PAB and PPB for N80 steel in HCl solution was investigated by means of weight loss test, potentiodynamic polarization and electrochemical impedance spectroscopy. The results showed that both PAB and PPB were mixed-type inhibitor, and were adsorbed on the surface of mild steel spontaneously; whilst PPB has higher inhibition efficiency than that of PAB, which accorded well with theoretical prediction. Furthermore,the adsorption of both PAB and PPB follows Langmuir isotherm law.

Key wordsbenzimidazol derivative    corrosion inhibitor    electrochemical measurement    quantum chemistry calculation    molecular dynamics simulation
    
ZTFLH:     
基金资助:长江大学工程技术学院科研基金项目 (13J0603) 资助

引用本文:

苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 415-422.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.188      或      https://www.jcscp.org/CN/Y2015/V35/I5/415

图1  两种缓蚀剂分子结构
Molecule Tmp / ℃ νN-H / cm-1 νC-N / cm-1 νC=N / cm-1 νC=C / cm-1
PAB 144~146 (147~148)[17] 3422.2 1199.5 1574.4 ---
PPB 86~89 3414.2 1193.0 1592.6 1627.4
表1  两种化合物的熔点和IR数据
cinh / mmolL-1 PAB PPB
v / gm-2h-1 η / % v / gm-2h-1 η / %
Blank 24.890 --- 24.920 ---
0.05 12.970 47.9 1.371 94.5
0.10 8.761 64.8 0.598 97.6
0.15 5.949 76.1 0.449 98.5
0.20 4.331 82.6 0.249 99.0
表2  失重法测试结果
图2  不同缓蚀剂浓度下N80钢的极化曲线
cinh mmolL-1 PAB PPB
Ecorr mv Icorr μAcm-2 ba mVdec bc mVdec fa fc Ecorr mv Icorr μAcm-2 ba mVdec bc mVdec fa fc
Blank -420 771.5 119.8 214.2 --- --- -420 771.5 119.8 214.2 --- ---
0.05 -415 435.0 102.8 192.9 0.50 0.59 -407 132.4 85.3 160.2 0.12 0.21
0.10 -412 292.7 79.3 210.0 0.30 0.41 -410 81.7 82.9 156.4 0.08 0.12
0.15 -412 232.4 112.0 187.8 0.26 0.33 -410 64.9 96.9 137.2 0.07 0.10
0.20 -402 177.7 91.4 179.2 0.15 0.29 -410 52.9 86.1 138.3 0.05 0.08
表3  未加缓蚀剂和加入不同浓度缓蚀剂后N80钢的极化曲线参数
图3  加入不同浓度缓蚀剂后试样的Nyquist曲线
图4  等效电路
cinh mmolL-1 PAB PPB
Rs / Ωcm2 CPE-T / Ω-1cm-2s-n n Rp / Ωcm2 Rs / Ωcm2 CPE-T / Ω-1cm-2s-n n Rp / Ωcm2
Blank 0.689 145.6 0.78 28.2 0.689 145.63 0.78 28.2
0.05 0.641 101.5 0.78 56.7 0.963 94.04 0.79 167.6
0.10 0.694 86.35 0.75 85.1 1.029 80.11 0.80 241.5
0.15 0.976 85.44 0.81 114.9 1.147 71.51 0.80 313.1
0.20 0.600 79.89 0.80 151.5 1.035 71.25 0.82 387.4
表4  未加和加入不同浓度缓蚀剂后N80钢的阻抗谱拟合参数
图5  PAB和PPB的吸附等温线
Molecule Slope R2 Kads Lmol-1 ΔG θads kJmol-1
PAB 0.912 0.9990 1.653×105 -40.39
PPB 0.995 0.9999 3.195×106 -47.85
表5  PAB和PPB在N80钢表面的吸附热力学参数
图6  PAB和PPB的分子前线轨道分布
Molecule EHOMO / eV ELUMO / eV ΔE1 / eV ΔE2 / eV ΔE3 / eV
PAB -9.998 -1.249 8.749 6.551 9.748
PPB -9.708 -2.697 7.011 5.103 9.458
Fe -7.800 -0.250 --- --- ---
表6  PAB, PPB及Fe的前线轨道能量
图7  PAB和PPB的平衡吸附构型
Molecule Etotal / kJmol-1 Esurface / kJmol-1 Emolecule / kJmol-1 Eadsorption / kJmol-1
PAB -7.708×105 -7.708×105 72.84 -108.73
PPB -7.710×105 -7.708×105 400.97 -663.47
H2O -7.708×105 -7.708×105 7.23 -25.62
表7  缓蚀剂分子与Fe (001) 面的吸附能
[1] Zhao F L. Oilfield Chemistry[M]. Dongying: Press of China University of Petroleum, 2000 (赵福麟. 油田化学[M]. 东营: 中国石油大学出版社, 2000)
[2] Zhang T S,Zhang H,Gao H,et al. Corrosion Inhibitor[M]. Beijing: Chemical Industry Press, 2008 (张天胜,张浩,高红等. 缓蚀剂[M]. 北京: 化学工业出版社, 2008)
[3] Wang H L, Xin J, Yuan C Z. Thermodynamics of the inhibiting process of Mannich bases on A3 carbon steel in hydrochloric acid[J]. J. Chin. Soc. Corros. Prot., 2001, 21(2): 125 (王慧龙, 辛剑, 袁成钟. 盐酸介质中Mannich碱缓蚀剂在碳钢表面的吸附热力学研究[J]. 中国腐蚀与防护学报, 2001, 21(2): 125)
[4] Dong M,Liu L W,Liu Y X,et al. Correlation between molecular structures of inhibitors and their performance in high temperature and high pressure H2S/CO2 environments [J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 157 (董猛, 刘烈炜, 刘月学等. 高温高压H2S/CO2环境缓蚀剂分子结构与缓蚀性能关系的研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 157)
[5] Ahamad I, Prasad R, Quraishi M A. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media[J]. Corros. Sci., 2010, 52: 1472
[6] Li K H, Wu L L. Synthesis of XJ Mannich base inhibitor and research of N80 steel corrosion performance[J]. Oilfield Chem., 2013, 30(3): 434 (李克华, 吴兰兰. 曼尼希碱缓蚀剂XJ合成及其对N80钢的缓蚀性能[J]. 油田化学, 2013, 30(3): 434)
[7] Zuo S R, Liu R Q. Corrosion inhibition actions of bis-benzotriazole Mannich alkali compounds for copper in 5%NaHCO3 solution[J]. J. Chin. Soc. Corros. Prot., 2011, 31(2): 105 (左书瑞, 刘瑞泉. 双苯并三唑Mannich碱在5%NaHCO3溶液中对Cu的缓蚀作用[J]. 中国腐蚀与防护学报, 2011, 31(2): 105)
[8] Li Y, Ma H Q, Wang Y L. Progress in the synthesis and application of benzimidazoles and their derivatives[J]. Chin J. Org. Chem., 2008, 28(2): 210 (李焱, 马会强, 王玉炉. 苯并咪唑及其衍生物合成与应用研究进展[J]. 有机化学, 2008, 28(2): 210)
[9] Popova A, Sokolova E, Raicheva S. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives[J]. Corros. Sci., 2003, 45: 33
[10] Hu S Q, Hu J C, Yu J H, et al. Studies on corrosion inhibition of benzimidazole and its derivatives[J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 354 (胡松青, 胡建春, 郁金华等. 苯并咪唑及其衍生物定量构效关系研究[J]. 中国腐蚀与防护学报, 2010, 30(5): 354)
[11] Li X X, Yang W Z. Inhibition of 1-propyl-2-methyl-3-alkyl benzimidazole on Q235 steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 168 (李相旭, 杨文忠. 盐酸介质中1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2012, 32(2):168)
[12] Zhang F, Tang Y M, Cao Z Y. Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl) -benzimidazole for mild steel in hydrochloric acid[J]. Corros. Sci., 2012, 54: 1
[13] Hu L Y, Zhang S T, Huang X H, et al. Corrosion inhibition of 6-Nitrobenzimidazole in KOH solution for Zinc[J]. J. Chin. Soc. Corros. Prot., 2012, 32(3): 267 (胡莲跃, 张胜涛, 黄小红等. 6-硝基苯并咪唑在KOH溶液中对锌的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(3): 267)
[14] Li J L, Liang C H, Huang N B, et al. Progress on research of benzimidazole derivative as corrosion inhibitor[J]. Corros. Sci. Prot. Technol., 2011, 23(2): 191 (李杰兰, 梁成浩, 黄乃宝等. 苯并咪唑衍生物缓蚀剂研究进展[J]. 腐蚀科学与防护技术, 2011, 23(2): 191)
[15] Xiao J, Wu Y R. The preparation of N-Mannich bases and its exchange reaction with arylketones[J]. J. Beijing Normal Univ., 1996, 32(3): 367 (肖军, 吴永仁. N-Mannich碱的制备及其与芳香酮的交换反应[J]. 北京师范大学学报, 1996, 32(3): 367)
[16] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing:Chemical Industry Press, 2004 (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2004)
[17] Bei F L, Chen H Q, Yang X J, et al. Synthesis, crystal structure and quantum chemical calculation of benzimidazole derivatives[J]. Chin. J. Orga. Chem., 2004, 24(3): 300 (卑凤利, 陈海群, 杨绪杰等. 苯并咪唑衍生物的合成晶体结构及量子化学计算[J]. 有机化学, 2004, 24(3): 300)
[18] Xu X J, Chen G X. Exchange reaction between acetophenone and benzimidazole N-Mannich base[J]. Acta Chim. Sin., 1982, 40(4): 362 (徐秀娟, 陈光旭. 苯并咪唑-N-Mannich碱与苯乙酮的交换反应[J]. 化学学报, 1982, 40(4): 362)
[19] Zhang S T, Tao Z H, Li W H, et al. A corrosion inhibition of mild steel by novel triazole compound in 1 mol/L HCl solution[J]. J.Chin. Soc. Corros. Prot., 2009, 29(6): 487 (张胜涛, 陶志华, 李伟华等. 新型三氮唑化合物在1 mol/L HCl中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2009, 29(6):487)
[20] Wang X, Yang H, Wang F. An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in 1 mol/L HCl solution[J]. Corros. Sci., 2009, 51(5): 1836
[21] Song W W, Zhang J, Du M. Inhibition performance of novel dissymmetric bisquaternary ammonium salt to Q235 steel in hydrochloric acid[J]. Acta Chim. Sin., 2011, 69(16): 1851 (宋伟伟, 张静, 杜敏. 新型不对称双季铵盐缓蚀剂在HCl中对Q235钢的缓蚀行为[J]. 化学学报, 2011, 69(16): 1851)
[22] Hu Y. Physical Chemistry[M]. Beijing: High Education Press, 2007 (胡英. 物理化学[M]. 北京: 高等教育出版社, 2007)
[23] Bereket G, Hur E, Ogretir C. Quantum chemical studies on some imidazole derivativesas corrosion inhibitors for iron in acidic medium[J]. J. Mol. Struct.(Theochem.), 2002, 578: 79
[24] Muralidharan S, Phani K, Pitchumani S. Polyamino-benzoquinone polymers-a new class of corrosion inhibitors for mild steel[J]. J. Electrochem. Soc., 1995, 142(5): 1478
[25] Shi W Y, Ding C, Yan J L, et al. Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crys-tal surfaces[J]. Desalination, 2012, 291: 8
[26] Zhang J, Zhao W M, Guo W Y, et al. Theoretical evaluation of corrosion inhibition performance of benzimidazole corrosion inhibitios[J]. Acta Phys.-Chim. Sin., 2008, 24(7): 1239 (张军, 赵卫民, 郭文跃等. 苯并咪唑类缓蚀剂缓蚀性能的理论评价[J]. 物理化学学报, 2008, 24(7): 1239)
[27] Liu J, Liu Z, Liu J, et al. Inhibition performance of a new 3,5-dibromosalicylaldehyde-2-thenoyl hydrazine Schiff base for carbon steel in oilfield water and relevant molecular dynamics simulation[J] J. Chin. Soc. Corros. Prot., 2014, 34(2): 101 (刘洁, 刘峥, 刘进等. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34(2): 101)
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[6] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[9] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[10] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[12] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[13] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[14] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[15] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.