Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 956-964    DOI: 10.11902/1005.4537.2024.211
Current Issue | Archive | Adv Search |
Effect of Self-generated Magnetic Field Produced by Electric Current on Atmospheric Corrosion Behavior of Copper
LI Qiubo, SU Yizhe, WU Wei(), ZHANG Junxi()
Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
Cite this article: 

LI Qiubo, SU Yizhe, WU Wei, ZHANG Junxi. Effect of Self-generated Magnetic Field Produced by Electric Current on Atmospheric Corrosion Behavior of Copper. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 956-964.

Download:  HTML  PDF(14051KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of self-generated magnetic field produced by electric current on the corrosion behavior of Cu in simulated marine atmospheric environments was studied via a novel lab-made electrochemical test set, which consists of that a current-carrying copper conductor is covered with T2 pure Cu foil, and a thin electrolyte layer (TEL) on top of the Cu foil. The surface morphology and composition of the corrosion products were characterized by using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy techniques. The results showed that with the increasing intensity of the self-generated magnetic field, both the cathodic and anodic processes of the copper were accelerated, jointly leading to an increase in the corrosion rate. During long term corrosion exposure, the composition of the corrosion products on the copper surface changes with the increasing intensity of the self-generated magnetic field, while weakening its protective ability for the subsequent corrosion of Cu substrate, thus, pitting corrosion occurs on the Cu surface. At the same time, it is found that the corrosion degree of the Cu surface is closely related to the direction of the electric current and locations of the test piece, namely where the current input the corrosion degree is higher than that the current output. Herewith, the influence mechanism of the self-generated magnetic field on the atmospheric corrosion of Cu is further discussed.

Key words:  copper      thin electrolyte layer      atmospheric corrosion      self-generated magnetic field     
Received:  15 July 2024      32134.14.1005.4537.2024.211
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52171074)
Corresponding Authors:  WU Wei, E-mail: wuweicorr@shiep.edu.cn;
ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.211     OR     https://www.jcscp.org/EN/Y2025/V45/I4/956

Fig.1  Schematic diagrams of the electrochemical measurement apparatus under thin electrolyte (a) and the cross-section of work electrode (b)
Fig.2  Comparison of magnetic field distributions on the surface of copper under operating condition (a) and simulated condition (b)
Fig.3  Nyquist plots (a) and Bode plots (b) of copper under thin electrolyte layers with different thicknesses at +50 mV (vs. OCP)
Fig.4  Weak polarization curves (a) and fitting parameters (b) of copper foil under 40 μm TEL at different self-generated magnetic field levels
Fig.5  Surface morphologies of the copper foil after exposure for 3 d under TEL at different self-generated magnetic field levels: (a) input end, 0 mT, (b) output end, 0 mT, (c) input end, 3 mT, (d) output end, 3 mT, (e) input end, 5.7 mT, (f) output end, 5.7 mT
Fig.6  Surface morphologies of copper foil after 7 d exposure under TEL at different self-generated magnetic field levels: (a) input end, 0 mT, (b) output end, 0 mT, (c) input end, 3 mT, (d) output end, 3 mT, (e) input end, 5.7 mT, (f) output end, 5.7 mT
Fig.7  XRD patterns of copper foil exposed for 7 d under TEL condition at different self-generated magnetic field levels
Fig.8  XPS fine spectra of Cu 2p3/2 of the corrosion films formed on copper foil exposed for 7 d at different self-generated magnetic field levels: (a) 0 mT input end, (b) 0 mT output end, (c) 5.7 mT input end, (d) 5.7 mT output end
Fig.9  XPS fine spectra of O 1s of the corrosion product films formed on copper foil exposed for 7 d at different self-generated magnetic field levels: (a) 0 mT input end, (b) 0 mT output end, (c) 5.7 mT input end, (d) 5.7 mT output end
Fig.10  Proportion of Cu (a, b) and O (c, d) with different valence states in the corrosion film on Cu foil after exposure under TEL for 7 d at 0 mT (a, c) and 5.7 mT (b, d)
Fig.11  Schematic diagrams of distributions of CuCl2- and O2 species on copper soil under the conditions of unapplied (a) and applied (b) self-generated magnetic field
[1] Zhou H, You S J, Wang S L. Corrosion behavior and corrosion inhibitor for copper artifacts in CO2 environment [J]. Chin. J. Corros. Prot., 2023, 43: 1049
(周 浩, 尤世界, 王胜利. 铜质文物在CO2环境中的腐蚀行为及缓蚀剂研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1049)
[2] Liao X N, Cao F H, Zheng L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer [J]. Corros. Sci., 2011, 53: 3289
[3] Zhang Y F, Yuan X G, Huang H J, et al. Corrosion behavior of Cu-Al laminated board in neutral salt fog environment [J]. Chin. J. Corros. Prot., 2021, 41: 241
(张艺凡, 袁晓光, 黄宏军 等. 铜铝层状复合板中性盐雾腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 241)
doi: 10.11902/1005.4537.2020.217
[4] Lv W Y, Zheng K Q, Wang Y B, et al. Influence of electric current on the corrosion behavior of Cu for the electric contact in the isolation switch [J]. Mater. Corros., 2019, 70: 1900
[5] Cheng Y L, Zuo X J, Yuan X G, et al. Influence of DC current on corrosion behaviour of copper-aluminium composite plates [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1142
[6] Gao Y, Li Q B, Wu W, et al. Atmospheric corrosion acceleration effect on commercial aluminum alloys in current-carrying condition [J]. Anti-Corros. Methods Mater., 2024, 71: 114
[7] Zhu L Y, Chen J Q, Zhang X X, et al. Research progress of effect of magnetic field on metal corrosion [J]. Chin. J. Corros. Prot., 2024, 44: 1117
(朱立洋, 陈俊全, 张欣欣 等. 磁场对金属腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1117)
doi: 10.11902/1005.4537.2023.381
[8] Lv Z P, Chen J J, Xiao Q, et al. Effects of magnetic fields on anodic dissolution of copper in solutions of various acidities [J]. Corros. Prot., 2014, 35: 1187
(吕战鹏, 陈俊劼, 肖 茜 等. 磁场对铜在几种酸性溶液中阳极溶解的影响 [J]. 腐蚀与防护, 2014, 35: 1187)
[9] Lu Z P, Shoji T, Yang W. Anomalous surface morphology of iron generated after anodic dissolution under magnetic fields [J]. Corros. Sci., 2010, 52: 2680
[10] Li X H, Tao Y Q, Huang H, et al. Effect of magnetic field on anodic process of X70 pipeline steel in sodium carbonate solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 765
(李晓徽, 陶轶琦, 黄 浩 等. 磁场对X70管线钢在碳酸钠溶液中阳极过程的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 765)
doi: 10.11902/1005.4537.2023.217
[11] Schott F W. On the biot-savart law [J]. IEEE Trans. Edu., 1982, 25: 39
[12] Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: The Kelvin force. A mini-review [J]. Electrochem. Commun., 2014, 42: 42
[13] Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: The Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
[14] Sueptitz R, Tschulik K, Uhlemann M, et al. Effect of magnetization state on the corrosion behaviour of NdFeB permanent magnets [J]. Corros. Sci., 2011, 53: 2843
[15] Luo S Z, Elouarzaki K, Xu Z J. Electrochemistry in magnetic fields [J]. Angew. Chem.-Int. Edit., 2022, 61: e202203564
[16] Nishikata A, Ichihara Y, Tsuru T. An application of electrochemical impedance spectroscopy to atmospheric corrosion study [J]. Corros. Sci., 1995, 37: 897
[17] Cruz R P V, Nishikata A, Tsuru T. AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment [J]. Corros. Sci., 1996, 38: 1397
[18] Huang H L, Dong Z H, Chen Z Y, et al. The effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1230
[19] Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1700
[20] Cao C N. Estimation of electrochemical kinetic parameters of corrosion processes by weak polarization curve fitting [J]. J. Chin. Soc. Corros. Prot., 1985, 5: 155
(曹楚南. 由弱极化曲线拟合估算腐蚀过程的电化学动力学参数 [J]. 中国腐蚀与防护学报, 1985, 5: 155)
[21] Ren P Y, Li R X, Wu X. Corrosion behavior of copper materials in marine atmosphere under action of magnetic field [J]. Corros. Prot., 2019, 40: 419
(任佩云, 李瑞雪, 吴 旭. 磁场作用下铜材在海洋大气中的腐蚀行为 [J]. 腐蚀与防护, 2019, 40: 419)
[22] Vernack E, Zanna S, Seyeux A, et al. ToF-SIMS, XPS and DFT study of the adsorption of 2-mercaptobenzothiazole on copper in neutral aqueous solution and corrosion protection in chloride solution [J]. Corros. Sci., 2023, 210: 110854
[23] McIntyre N S, Cook M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper [J]. Anal. Chem., 1975, 47: 2208
[24] Klein J C, Li C P, Hercules D M, et al. Decomposition of copper compounds in X-ray photoelectron spectrometers [J]. Appl. Spectrosc., 1984, 38: 729
[25] Huang J B, Wu X Q, Han E H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
[26] Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
[27] Van Ingelgem Y, Hubin A, Vereecken J. Investigation of the first stages of the localized corrosion of pure copper combining EIS, FE-SEM and FE-AES [J]. Electrochim. Acta, 2007, 52: 7642
[28] Faita G, Fiori G, Salvadore D. Copper behaviour in acid and alkaline brines—I kinetics of anodic dissolution in 0.5M NaCl and free-corrosion rates in the presence of oxygen [J]. Corros. Sci., 1975, 15: 383
[29] Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution [J]. J. Mater. Sci. Technol., 2010, 26: 355
[30] Wei X, Dong C F, Yi P, et al. Electrochemical measurements and atomistic simulations of Cl--induced passivity breakdown on a Cu2O film [J]. Corros. Sci., 2018, 136: 119
[1] PENG Wenshan, XIN Yonglei, WEN Jieping, HOU Jian, SUN Mingxian. Effect of Variable- and Constant-Temperature on Corrosion Behavior of High Strength Steel under Polar Ice Cover[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[2] HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[3] FAN Zhibin, GAO Zhiyue, ZONG Lijun, WU Yaping, LI Xingeng, JIANG Bo, DU Baoshuai. Corrosion Behaviour and Characteristics of 1050A Al-alloy Exposed in Typical Atmospheres of Shandong Province[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[4] ZHANG Jiawei, HUANG Feng, WANG Hanmin, LANG Fengjun, YUAN Wei, LIU Jing. Effect of Rolling Scale on Evolution of Fast-stabilized Rust Layer and Corrosion Resistance of a Weathering Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[5] ZHANG Jihao, XU Yacheng, JIA Xueyuan, GAO Rongjie. Preparation and Corrosion Resistance of Superamphiphobic Surface on B10 Cu-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
[6] FENG Likui, CHENG Yijie, SONG Xiaoning, YU Zhiyong, YAN Zixuan, ZHANG Daquan. Corrosion Inhibition of 1, 2, 4-triazaole on Copper in a Stimulated Cooling Water for Synchronous Condenser[J]. 中国腐蚀与防护学报, 2024, 44(3): 772-780.
[7] LI Tingyu, WEI Jie, CHEN Nan, WAN Ye, DONG Junhua. Corrosion Performance of Electrochemical Sensors for Atmospheric Environments[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[8] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[9] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[10] HE Yi, ZHENG Chuanbo, QI Haoyu, LIU Zhenguang. Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[11] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[12] GUO Zhao, LI Han, CUI Zhongyu, WANG Xin, CUI Hongzhi. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[13] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[14] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[15] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
No Suggested Reading articles found!