Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 772-780    DOI: 10.11902/1005.4537.2023.197
Current Issue | Archive | Adv Search |
Corrosion Inhibition of 1, 2, 4-triazaole on Copper in a Stimulated Cooling Water for Synchronous Condenser
FENG Likui1, CHENG Yijie1, SONG Xiaoning1, YU Zhiyong1, YAN Zixuan2, ZHANG Daquan2()
1. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China
2. Department of Environment and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China
Cite this article: 

FENG Likui, CHENG Yijie, SONG Xiaoning, YU Zhiyong, YAN Zixuan, ZHANG Daquan. Corrosion Inhibition of 1, 2, 4-triazaole on Copper in a Stimulated Cooling Water for Synchronous Condenser. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 772-780.

Download:  HTML  PDF(5550KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of a corrosion inhibitor 1.2.4-Triazole (TAZ) on the water quality of a simulated solution of the rotor cooling water and the corrosion inhibition performance for pure Cu-plate were assessed by means of pH meter, conductivity meter and dissolved oxygen analyzer, as well as measurements such as mass loss, dynamic potentiodynamic polarization curve, and electrochemical impedance spectroscopy. The results show that the addition of TAZ can reduce the pH value to a certain extent, but have little effect on the conductivity and dissolved oxygen content of the solution; With the increase of TAZ concentration, the corrosion rate and the corrosion current density for Cu decrease, i.e., its corrosion inhibition efficiency rises. The highest corrosion inhibition efficiency was 99.9% (loss-in-mass method) and 92.0% (EIS method) when the dose of TAZ was 10 mmol/L. The adsorption process on the metal surface was fitted using Langmuir isotherm, which confirmed that the adsorption of TAZ on the copper surface is a mixed adsorption. The theoretical calculations further proved that TAZ has a better adsorption effect on the surface of Cu, which can effectively inhibit the Cu corrosion in the simulated solution. It is expected that TAZ may have better corrosion inhibition performance for Cu in the rotor cooling waters, which is a kind of green corrosion inhibitor in spontaneous adsorption. Thus, the present results may be a meaningful reference for the application of corrosion inhibitor to protect the hollow-core copper conductors in the rotor cooling water for synchronous condenser.

Key words:  synchronous condenser      corrosion inhibition      1,2,4-Triazole      copper      coolant     
Received:  16 June 2023      32134.14.1005.4537.2023.197
ZTFLH:  TG174  
Fund: State Grid Zhejiang Electric Power Co., Ltd(5211DS22000L)
Corresponding Authors:  ZHANG Daquan, E-mail: zhangdaquan@shiep.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.197     OR     https://www.jcscp.org/EN/Y2024/V44/I3/772

Fig.1  Ion release rates of copper in the coolant aqueous solutions containing different concentrations of TAZ at 40oC and inhibition efficiencies of TAZ
Fig.2  pH and dissolved oxygen values (a) and conductivities (b) of Cu before and after 120 h immersion in the coolant aqueous solutions containing different concentrations of TAZ
Fig.3  Fluorescence emissions of Cu before and after immersion in the stimulated cooling waters containing different concentrations of TAZ
Fig.4  OCP (a) and polarization curves (b) of copper in simulated cooling waters with different concentrations of TAZ at room temperature

C

mmol·L-1

Ecorr

V vs. SCE

Icorr

μA·cm-2

-βc

mV·dec-1

βa

mV·dec-1

ηi

%

Blank-0.0511.450176.7318.2-
0.5-0.1935.074 × 10-2129.9211.096.5
1-0.2314.390 × 10-2132.8216.497.0
5-0.2744.138 × 10-2140.5226.797.1
10-0.2272.459 × 10-2126.8213.098.3
15-0.2353.396 × 10-2139.4218.497.7
20-0.2374.200 × 10-2135.9222.897.1
Table 1  Electrochemical polarization parameters of copper in the simulated cooling water with different concentrations of TAZ
Fig.5  Nyquist (a) and Bode (b) plots of copper electrode in the simulated cooling solutions with different concentrations of TAZ
Fig.6  Equivalent circuit for fitting EIS

TAZ

mmol·L-1

RS

kΩ·cm2

Qf

Rf

kΩ·cm2

Qdl

Rct

kΩ·cm2

Rp

kΩ·cm2

X2

ηE

%

Y0

nS⋅s n ·cm-2

n

Y0

μS·s n ·cm-2

n
Blank2.5653.0100.919.02215.450.64206.1215.1221.28 × 10-3-
11.1191.9600.8715.814.5600.7517711786.811.80 × 10-388.0
50.8490.8050.9235.213.9540.7620522087.217.87 × 10-489.7
101.1501.2220.8923.193.4520.7726592682.191.27 × 10-392.0
151.0951.3290.8816.563.2470.8122692285.569.83 × 10-490.6
201.0860.9990.9228.374.5680.7616211266.716.87 × 10-487.0
Table 2  Fitting parameters of EIS of copper electrode in the simulated cooling solutions with different concentrations of TAZ
Fig.7  Langmuir adsorption isotherm of TAZ and relevant parameters

TAZ

mmol·L-1

Goodness of Fitting (GOF)Mean Square Error (MSE)

Thickness

of TA2

nm

20.999992.46428.78
50.999965.11667.86
100.999955.64808.64
150.9998210.5888.76
200.999366.59128.87
Table 3  Thicknesses of TAZ films adsorbed on Cu
Fig.8  Shapes of water drops on Cu immersed in the stimulated cooling waters containing 0 mmol/L (a), 5 mmol/L (b), 10 mmol/L (c) and 15 mmol/L (d) TAZ
Fig.9  Quantum chemical calculations of TAZ molecule structure:(a) optimal structure, (b) ESP, (c) HOMO, (d) LUMO
Fig.10  TDOS of pure copper surface (a), PDOS of copper surface with TAZ molecular (b) and Electronic density profile of copper surface and TAZ molecule composite model (c)
Fig.11  Molecular dynamic simulated equilibrium configuration of TAZ adsorption on Cu surface
1 Zhou J. Temperature warning and fault diagnosis of air cooler of hydro-generator [D]. Chongqing: Chongqing University of Technology, 2022
周 俊. 水轮发电机空气冷却器温度预警及故障诊断研究 [D]. 重庆: 重庆理工大学, 2022
2 Huang G K. Optimization and transformation of rotor cooling water system of 300MW double water internal cooling generator unit [J]. Mod. Ind. Econ. Inform., 2021, 11(9): 189
黄广逵. 基于300MW双水内冷发电机组转子冷却水系统优化改造 [J]. 现代工业经济和信息化, 2021, 11(9): 189
3 Liu X. Analytical study of copper corrosion inhibitors BTA and MBT in circulating water [D]. Jinan: Shandong University, 2014
刘 兴. 循环水中铜缓蚀剂BTA和MBT的分析研究 [D]. 济南: 山东大学, 2014
4 Huang H L, Guo X M. The relationship between the inhibition performances of three benzo derivatives and their structures on the corrosion of copper in 3.5 wt.% NaCl solution [J]. Colloids Surf., 2020, 598A: 124809
5 Bayoumi F M, Abdullah A M, Attia B. Kinetics of corrosion inhibition of benzotriazole to copper in 3.5% NaCl [J]. Mater. Corros., 2008, 59: 691
6 Grillo F, Gattinoni C, Larrea C R, et al. Copper adatoms mediated adsorption of benzotriazole on a gold substrate [J]. Appl. Surf. Sci., 2022, 600: 154087
doi: 10.1016/j.apsusc.2022.154087
7 Liang Y B, Zhang Q Z, Han C H, et al. Inhibition behavior of a nano-corrosion inhibitor capsule prepared from MOFs and BTA for copper [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1058
连宇博, 张庆祝, 韩创辉 等. 一种基于MOFs与BTA的纳米缓蚀胶囊对铜的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1058
doi: 10.11902/1005.4537.2021.288
8 Ryu H Y, Lee C H, Lee S U, et al. Theoretical validation of inhibition mechanisms of benzotriazole with copper and cobalt for CMP and post-CMP cleaning applications [J]. Microelectron. Eng., 2022, 262: 111833
doi: 10.1016/j.mee.2022.111833
9 Wang Z Y. Analysis and treatment measures to the TBM-160-2 water cooled generator rotor failure [J]. Mech. Res. Appl., 2016, 29(1): 195
王征远. TBM-160-2型水冷式发电机转子故障的原因分析及处理对策 [J]. 机械研究与应用, 2016, 29(1): 195
10 Wang H, Chen G M, Ni Z F, et al. Effect of 1, 2, 4-triazole and benzotriazole on chemical-mechanical polishing of 316L stainless steel [J]. Diam. Abr. Eng., 2021, 41(1): 83
王 浩, 陈国美, 倪自丰 等. 1, 2, 4–三氮唑和苯并三氮唑对316L不锈钢化学机械抛光的影响 [J]. 金刚石与磨料磨具工程, 2021, 41(1): 83
11 Bai X, Cheng S C. Research progress of 1, 2, 3-benzotriazole as a corrosion inhibitor for copper [J]. J. Chem. Ind. Eng., 2011, 32(6): 21
doi: 10.1016/j.jiec.2015.09.003
白 雪, 程世超. 1, 2, 3-苯并三氮唑铜缓蚀剂的研究进展 [J]. 化学工业与工程技术, 2011, 32(6): 21
12 Yin D, Yang L, Niu X H, et al. Theoretical and electrochemical analysis on inhibition effect of benzotriazole and 1, 2, 4-triazole on cobalt surface [J]. Colloid. Surf., 2020, 591A: 124516
13 Tchoumene R, Kenne Dedzo G, Ngameni E. Intercalation of 1, 2, 4-triazole in methanol modified-kaolinite: Application for copper corrosion inhibition in concentrated sodium chloride aqueous solution [J]. J. Solid State Chem., 2022, 311: 123103
doi: 10.1016/j.jssc.2022.123103
14 Liu P, Wang G Y, Zhao Y W, et al. Anti-corrosion mechanisms of 1, 2, 4-triazole and benzotriazole on the aluminum during chemical mechanical polishing process [J]. Mater. Prot., 2019, 52(5): 6
刘 萍, 王永光, 赵永武 等. 铝化学机械抛光中1, 2, 4-三唑和苯并三氮唑的缓蚀机制 [J]. 材料保护, 2019, 52(5): 6
15 Zhao W W, Zhao S L, Liang H D. Determined copper in aqueous solution by flame atomic absorption spectrometry [J]. Sci. Technol. Eng., 2007, 7: 5039
赵微微, 赵松林, 梁华定. 火焰原子吸收光谱法测定水样中铜离子 [J]. 科学技术与工程, 2007, 7: 5039
16 Chen Y F, Li Z X, Wang H N, et al. Corrosion behavior of T2 copper in static artificial seawater [J]. Mater. Prot., 2018, 51(2): 14
陈云飞, 李争显, 王浩楠 等. T2紫铜在静态人造海水中的腐蚀行为 [J]. 材料保护, 2018, 51(2): 14
17 Fan C C. Study on synthesis and application of 1.2 4-triazole derivatives [D]. Nanjing: Southeast University, 2018
范长春. 1, 2, 4-三唑衍生物的合成及应用研究 [D]. 南京: 东南大学, 2018
18 Ghailane T, Balkhmima R A, Ghailane R, et al. Experimental and theoretical studies for mild steel corrosion inhibition in 1M HCl by two new benzothiazine derivatives [J]. Corros. Sci., 2013, 76: 317
doi: 10.1016/j.corsci.2013.06.052
19 Hassairi H, Bousselmi L, Khosrof S, et al. Evaluation of the inhibitive effect of benzotriazole on archeological bronze in acidic medium [J]. Appl. Phys., 2013, 113A: 923
20 Kumar R, Chahal S, Kumar S, et al. Corrosion inhibition performance of chromone-3-acrylic acid derivatives for low alloy steel with theoretical modeling and experimental aspects [J]. J. Mol. Liq., 2017, 243: 439
doi: 10.1016/j.molliq.2017.08.048
21 Tan B C, Zhang S T, Qiang Y J, et al. A combined experimental and theoretical study of the inhibition effect of three disulfide-based flavouring agents for copper corrosion in 0.5 M sulfuric acid [J]. J. Colloid Interf. Sci., 2018, 526: 268
doi: 10.1016/j.jcis.2018.04.092
22 Dehghani A, Bahlakeh G, Ramezanzadeh B, et al. Potential role of a novel green eco-friendly inhibitor in corrosion inhibition of mild steel in HCl solution: detailed macro/micro-scale experimental and computational explorations [J]. Construct. Build. Mater., 2020, 245: 118464
doi: 10.1016/j.conbuildmat.2020.118464
23 Li W, Tan B M, Zhang S H, et al. Insights into triazole derivatives as potential corrosion inhibitors in CMP process: experimental evaluation and theoretical analysis [J]. Appl. Surf. Sci., 2022, 602: 154165
doi: 10.1016/j.apsusc.2022.154165
24 Zhao X, Chen C F, Sun Q, et al. Molecular structure optimization design of inhibitors based on frontier orbitals theory [J]. Appl. Surf. Sci., 2019, 494: 895
doi: 10.1016/j.apsusc.2019.07.248
25 Guo X M, Huang H L, Liu D. The inhibition mechanism and adsorption behavior of three purine derivatives on the corrosion of copper in alkaline artificial seawater: structure and performance [J]. Colloid. Surf., 2021, 622A: 126644
26 Srivastava V, Salman M, Chauhan D S, et al. (E)-2-styryl-1H-benzo[d] imidazole as novel green corrosion inhibitor for carbon steel: experimental and computational approach [J]. J. Mol. Liq., 2021, 324: 115010
doi: 10.1016/j.molliq.2020.115010
27 Dai W, Zhang Y Y. Molecular dynamics simulation of the adsorption behavior of amino acid corrosion inhibitor on Cu(001) surface [J]. Appl. Mech. Mater., 2011, 121-126: 226
doi: 10.4028/www.scientific.net/AMM.121-126
28 Li W, Ma T D, Tan B M, et al. The effect of structural properties of benzo derivative on the inhibition performance for copper corrosion in alkaline medium: experimental and theoretical investigations [J]. Colloid. Surf., 2022, 649A: 129531
[1] ZHOU Wenbin, LI Mengran, ZHOU Xin, SUN Haijing, SUN Jie. Oil Soluble Mannich Base Corrosion Inhibitor for Corrosion Inhibition of Copper in Transformer Oil[J]. 中国腐蚀与防护学报, 2024, 44(2): 453-461.
[2] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[3] HE Yi, ZHENG Chuanbo, QI Haoyu, LIU Zhenguang. Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[4] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[5] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[6] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[7] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[8] WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[9] SHANG Xiaobiao, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[10] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[11] ZHU Hao, CHENG Yi, SONG Xuan, ZHAO Wenxia, LI Xinwei, LIU Xin, HUI Kaihong, CHEN Huaijun, ZHAI Shilong. Effect of L-malic Acid and 2,2'-bidipyridine on Electroless Copper Plating in Potassium Sodium Tartrate System at Low Temperature[J]. 中国腐蚀与防护学报, 2023, 43(3): 544-552.
[12] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[13] GAO Yibin, DU Xiaogang, WANG Qiwei, ZHONG Liming, FU Wenhua, ZHANG Hanping, ZHANG Meng, JIANG Chunhai. Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(2): 435-440.
[14] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[15] LIAO Jiapeng, MAO Yulong, JIN Desheng, LI Jinggang. Laboratory Simulation of Crud Deposition on Zr-alloy Fuel Cladding in Simulated Pressurized Water Reactor Primary Coolant[J]. 中国腐蚀与防护学报, 2023, 43(1): 197-201.
No Suggested Reading articles found!