Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1435-1442    DOI: 10.11902/1005.4537.2024.049
Current Issue | Archive | Adv Search |
Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment
PANG Jie1,2, LIU Xiangju1(), LIU Nazhen1(), HOU Baorong1
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100101, China
Cite this article: 

PANG Jie, LIU Xiangju, LIU Nazhen, HOU Baorong. Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1435-1442.

Download:  HTML  PDF(4232KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this study, the galvanic corrosion behavior of T2 Cu-alloy and Q235 steel in solutions containing Na2SO4 and NaCl with various amount of Cl- was investigated by electrochemical tests and corrosion product analysis. The results show that T2 Cu-alloy acts as cathode, while Q235 steel as anode for the galvanic couple, therefore Q235 steel experiences corrosion with accelerating rate; With the increasing of Cl- concentration, the galvanic current density (Ig) of the galvanic couple exhibits a maximum due to the decrease of dissolved oxygen content in the solution, the decrease of oxygen diffusion coefficient and the increase of solution conductivity etc.; As the area ratio of T2 Cu-alloy to 235 steel increases, Ig increases significantly, indicating that the galvanic corrosion reaction is controlled by cathodic reaction; When the temperature increases from 25oC to 50oC, Ig increases and a maximum occurs at lower Cl- concentrations; galvanic potential (Eg) shifted negatively with the increasing Cl- concentration as influenced by dissolved oxygen. The results of this study may provide a reference for understanding the influence of Cl- concentration on galvanic corrosion of Cu-coated carbon steel metal containers.

Key words:  T2 Cu-alloy      Q235 steel      Cl- concentration      galvanic corrosion     
Received:  14 February 2024      32134.14.1005.4537.2024.049
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52201092);Shandong Provincial Natural Science Foundation(ZR2022QB128)
Corresponding Authors:  LIU Xiangju, E-mail: liuxiangju124@163.com
LIU Nazhen, E-mail: liunazhen@qdio.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.049     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1435

Fig.1  OCP-t curves of T2 Cu-based alloy and Q235 steel in simplified Beishan groundwater simulation fluid
Fig.2  Influences of Cl- concentration on OCP values of T2 Cu-based alloy and Q235 steel at 25oC
Fig.3  Polarization curves of T2 Cu-based alloy (a) and Q235 steel (b) in test solutions with different Cl- concentrations at 25oC

[Cl-]

mol·L-1

T2 -alloyQ235 steel

Ecorr

mV

Icorr

μA·cm-2

Ecorr

mV

Icorr

μA·cm-2

0.01-891.4-64746.8
0.1-1371.8-62358.9
1-2085.4-63832.4
Table 1  Fitting parameters of polarization curves of T2 Cu-based alloy and Q235 steel
Fig.4  Influences of Cl- concentration on galvanic current density (a) and galvanic potential (b) of Q235 steel at 25oC
Fig.5  Influences of Cl- concentration on galvanic current density (a) and galvanic potential (b) of Q235 steel at 50oC
Fig.6  Variations of electrical conductivity of the test solution with Cl- concentration at 25oC and 50oC
Fig.7  SEM surface morphologies of Q235 steel after corrosion at 25oC under the conditions of the area ratio of 10∶1 and Cl- concentrations of 0.001 mol·L-1 (a, b), 0.05 mol·L-1 (c, d), and 2 mol·L-1 (e, f)
Fig.8  Raman spectra of inner layer (a, b) and out layer (c, d) of corrosion products formed on Q235 steel after galvanic corrosion, at 25oC with [Cl-] = 0.05 mol·L-1, Cu/carbon steel area ratio = 10∶1
1 Torjman M, Shaaban H. Nuclear energy as a primary source for a clean hydrogen energy system [J]. Energy Convers. Manag., 1998, 39: 27
2 Wang J. High-level radioactive waste disposal in China: update 2010 [J]. J. Rock Mech. Geotech. Eng., 2010, 2: 1
3 Wei X, Dong J H, Ke W. Progress on a corrosion study of low carbon steel for HLW container in a simulated geological disposal environment in China [J]. Corros. Commun., 2021, 1: 10
4 King F. Container materials for the storage and disposal of nuclear waste [J]. Corrosion, 2013, 69: 986
5 Metcalf P, Batandjieva B. International safety standards for radioactive waste (RAW) management and remediation of contaminated sites [A]. LeeWE, OjovanMI, JantzenCM. Radioactive Waste Management and Contaminated Site Clean-Up: Processes, Technologies and International Experience [M]. New Delhi: Woodhead Publishing, 2013: 73
6 Wang J. Progress of geological disposal of high-level radioactive waste in China in the 21st Century [J]. At. Energy Sci. Technol., 2019, 53: 2072
(王 驹. 中国高放废物地质处置21世纪进展 [J]. 原子能科学技术, 2019, 53: 2072)
7 Wang J. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China [J]. J. Rock Mech. Geotech. Eng., 2014, 6: 99
8 Chapman N, Hooper A. The disposal of radioactive wastes underground [J]. Proc. Geol. Assoc., 2012, 123: 46
9 Johnson L, King F. The effect of the evolution of environmental conditions on the corrosion evolutionary path in a repository for spent fuel and high-level waste in Opalinus Clay [J]. J. Nucl. Mater., 2008, 379: 9
10 Shoesmith D W. Assessing the corrosion performance of high-level nuclear waste containers [J]. Corrosion, 2006, 62: 703
11 Gras J M. Life prediction for HLW containers-issues related to long-term extrapolation of corrosion resistance [J]. C. R. Phys., 2002, 3: 891
12 King F. Factors in the selection of container materials for the disposal of HLW/SF [J]. MRS Online Proc. Libr., 2012, 1475: 241
13 Xue F, Wei X, Dong J H, et al. Research progress on corrosion behavior of low carbon steel in deep geological disposal environment of high-level waste [J]. Corros. Sci. Prot. Technol., 2015, 27: 497
(薛 芳, 魏 欣, 董俊华 等. 高放废物深地质处置环境中低碳钢腐蚀行为的研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 497)
14 Sun Y P, Wei X, Dong J H, et al. Understanding the role of alloyed Ni and Cu on improving corrosion resistance of low alloy steel in the simulated Beishan groundwater [J]. J. Mater. Sci. Technol., 2022, 130: 124
doi: 10.1016/j.jmst.2022.03.037
15 Zhang Q C, Zheng M, Huang Y L, et al. Corrosion behaviour of carbon steel, titanium and titanium alloy in simulated underground water in Beishan area preselected for nuclear waste repository in China [J]. Corros. Eng. Sci. Technol., 2017, 52: 425
16 Liu C S, Wang J Q, Zhang Z M, et al. Studies on corrosion behaviour of low carbon steel canister with and without γ-irradiation in China's HLW disposal repository [J]. Corros. Eng. Sci. Technol., 2017, 52: 136
17 Standish T, Chen J, Jacklin R, et al. Corrosion of copper-coated steel high level nuclear waste containers under permanent disposal conditions [J]. Electrochim. Acta, 2016, 211: 331
18 Zheng M, Zhang Q C, Huang Y L, et al. Determination of representative ground-water for corrosion assessment of candidate materials used in beishan area preselected for high-level radioactive waste disposal repository [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 185
(郑 珉, 张琦超, 黄彦良 等. 中国高放废物处置库甘肃北山预选区腐蚀研究用代表性地下水成分的确定 [J]. 中国腐蚀与防护学报, 2016, 36: 185)
19 Wang H L. Study on regional groundwater flow simulation and rock mass permeability characteristics in Beishan preselection area of high level radioactive waste disposal repository [D]. Beijing: Beijing Research Institute of Uranium Geology, 2014: 25
(王海龙. 高放废物处置库北山预选区区域地下水流模拟及岩体渗透特征研究 [D]. 北京: 核工业北京地质研究院, 2014: 25)
20 Standish T E, Braithwaite L J, Shoesmith D W, et al. Influence of area ratio and chloride concentration on the galvanic coupling of copper and carbon steel [J]. J. Electrochem. Soc., 2019, 166: C3448
doi: 10.1149/2.0521911jes
21 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
(刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883)
doi: 10.11902/1005.4537.2020.184
22 Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
(王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
23 Cramer S D. Solubility of methane in brines from 0 to 300oC [J]. Ind. Eng. Chem. Process Des. Dev., 1984, 23: 533
24 Geng M, Duan Z H. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures [J]. Geochim. Cosmochim. Acta, 2010, 74: 5631
25 Hung G W, Dinius R H. Diffusivity of oxygen in electrolyte solutions [J]. J. Chem. Eng. Data, 1972, 17: 449
26 Xing W, Yin M, Lv Q, et al. Oxygen solubility, diffusion coefficient, and solution viscosity [A]. XingW, YinG P, ZhangJ J. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts [M]. Elsevier, 2014: 1
27 England W A, Bennett M J, Greenhalgh D A, et al. The characterization by raman spectroscopy of oxide scales formed on a 20Cr-25Ni-Nb stabilized stainless steel [J]. Corros. Sci., 1986, 26: 537
28 Kiefer W. Recent advances in linear and nonlinear Raman spectroscopy I [J]. J. Raman Spectrosc., 2007, 38: 1538
29 Zhang X, Xiao K, Dong C F, et al. In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO2-4 [J]. Eng. Fail. Anal., 2011, 18: 1981
30 Nie X H, Li X G, Du C W, et al. Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy [J]. J. Raman Spectrosc., 2009, 40: 76
31 De Faria D L A, Venâncio Silva S, De Oliveira M T. Raman microspectroscopy of some iron oxides and oxyhydroxides [J]. J. Raman Spectrosc., 1997, 28: 873
32 Réguer S, Neff D, Bellot-Gurlet L, et al. Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products [J]. J. Raman Spectrosc., 2007, 38: 389
[1] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[2] YIN Jie, GAO Yonghao, YI Fang. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[3] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[4] ZHOU Long, LU Jun, DING Wenshan, LI Hao, TAO Tao, SHI Chao, SHAO Yawei, LIU Guangming. Effect of Different Phytates on Corrosion Behaviors of Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[5] ZHOU Lanxin, ZHANG Liping, TANG Yan, CHEN Keyu, ZHOU Jianjun, SHI Chao, SHAO Yawei, LIU Guangming. Preparation of Zinc Phytate and Its Effect on Corrosion Behavior of Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 396-404.
[6] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[7] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[8] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[9] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[10] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[11] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[12] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[13] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[14] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[15] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
No Suggested Reading articles found!