|
|
Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy |
WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui( ), CAO Fahe |
School of Materials, Sun Yat-sen University, Shenzhen 518107, China |
|
Cite this article:
WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1423-1434.
|
Abstract Addressing the issue of crack formation in SiO2 coatings during high-temperature oxidation, a supplementary Zr layer was applied onto the SiO2 coating surface through magnetic sputtering. This study revealed that the Zr layer, upon oxidation, transformed into ZrO2, may effectively amend the cracks and voids that emerged during the sintering process of the SiO2 coating. Furthermore, it mitigated the thermal expansion coefficient (TEC) disparity between TiAl and SiO2 coatings. In addition, the ZrO2-SiO2 skeleton structure formed during the oxidation process may be able to improve the stability of the coating structure. The resultant Zr-SiO2 composite coating significantly impeded oxygen inward diffusion from the ambient environment to the Ti45Al8.5Nb substrate, even the outward diffusion of alloy elements in the early stage of oxidation, which notably enhancing its resistance against high-temperature oxidation. Notably, limited growth of oxide particles was observed on the alloy, with a negligible increase in the thickness of oxide scale. Additionally, following a period of 100-hour oxidation at 900oC, mutual element diffusion from both the substrate and coating led to the formation of a three-layered interdiffusion zone (Ti, Nb)O2/Ti5Si3 + Al2O3 + Nb3Al/TiN. This interdiffusion zone notably bolstered the bond strength between the composite coating and the Ti45Al8.5Nb substrate.
|
Received: 02 January 2024
32134.14.1005.4537.2024.004
|
|
Fund: National Natural Science Foundation of China(51971205);Guangdong Basic and Applied Basic Research Foundation(2021B1515020056) |
Corresponding Authors:
WU Liankui, E-mail: wulk5@mail.sysu.edu.cn
|
1 |
Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys [J]. Intermetallics, 2000, 8: 1283
|
2 |
Peng X M, Xia C Q, Wang Z H, et al. Development of high temperature oxidation and protection of TiAl-based alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 1116
|
|
(彭小敏, 夏长清, 王志辉 等. TiAl基合金高温氧化及防护的研究进展 [J]. 中国有色金属学报, 2010, 20: 1116)
|
3 |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
|
4 |
Zheng N, Fischer W, Grübmeier H, et al. The significance of sub-surface depletion layer composition for the oxidation behaviour of γ-titanium aluminides [J]. Scr. Metall. Mater., 1995, 33: 47
|
5 |
Lin J P, Zhang L Q, Song X P, et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds [J]. Mater. China, 2010, 29: 1
|
|
(林均品, 张来启, 宋西平 等. 轻质γ-TiAl金属间化合物的研究进展 [J]. 中国材料进展, 2010, 29: 1)
|
6 |
Dong L M, Cui Y Y, Yang R, et al. Effects of element Si on oxidation resistance of TiAl alloys [J]. Acta Metall. Sin., 2004, 40: 383
|
|
(董利民, 崔玉友, 杨 锐 等. 元素Si对TiAl合金抗氧化性能的影响 [J]. 金属学报, 2004, 40: 383)
|
7 |
Li D X, Zhang G Y, Lu G, et al. Optimizing high-temperature oxidation behaviors of high-Nb-containing TiAl alloys by addition of boron [J]. Corros. Sci., 2020, 177: 108971
|
8 |
Zhang C, Zhang S H, Pan Y, et al. Effect of Sn addition on the mechanical properties and high-temperature oxidation resistance of intermetallic TiAl alloys by first principles study and experimental investigation [J]. J. Mater. Res. Technol., 2022, 21: 3666
|
9 |
Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: a review [J]. Corros. Commun., 2021, 1: 58
|
10 |
Tian S W, Zhang Y F, He A R, et al. Interdiffusion mechanism at the interface between TiAl alloy and NiCoCrAlY bond coating [J]. Surf. Coat. Technol., 2022, 444: 128687
|
11 |
Wang C X, Huang J N, Wang Y L. Preparation and properties of α-Al2O3 diffusion barrier on stainless steel 316 [J]. Corros. Commun., 2022, 8: 18
|
12 |
Yang L L, Gao F Y, Zhou Z H, et al. Oxidation behavior of the AlN coatings on the TiAl alloy at 900 C [J]. Corros. Sci., 2023, 211: 110891
|
13 |
Yang Y F, Xiao Q, Ren P, et al. Improved oxidation resistance of γ-TiAl intermetallics by sputtered Ni + CrAlYHfSiN composite coating [J]. Corros. Sci., 2021, 187: 109510
|
14 |
Ai P, Liu L X, Li X G, et al. Influence of TiAlSiN coatings on high temperature oxidation resistance of γ-TiAl based alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 306
|
|
(艾 鹏, 刘礼祥, 李晓罡 等. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 306)
|
15 |
Xia J J, Niu H Z, Liu M, et al. Enhancement of high temperature oxidation resistance of Ti48Al5Nb alloy via anodic anodization in NH4F containing ethylene glycol [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 96
|
|
(夏俊捷, 牛红志, 刘 敏 等. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能 [J]. 中国腐蚀与防护学报, 2019, 39: 96)
doi: 10.11902/1005.4537.2018.188
|
16 |
Yu B, Li Z, Zhou K X, et al. High-temperature performance of MoSi2 modified YGYZ thermal barrier coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 812
|
|
(宇 波, 李 彰, 周凯旋 等. MoSi2改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 812)
|
17 |
Wu L K, Wu W Y, Song J L, et al. Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film [J]. Corros. Sci., 2018, 140: 388
|
18 |
Yan H J, Wu L K, Cao F H. Development of SiO2-based protective coatings on TiAl alloy [J]. Mater. China, 2022, 41: 345
|
|
(严豪杰, 伍廉奎, 曹发和. TiAl合金表面SiO2防护涂层研究进展 [J]. 中国材料进展, 2022, 41: 345)
|
19 |
Chen L, Li J H, Wang G Q, et al. Improving oxidation resistance of Si coating by isolated-particle healing [J]. Corros. Commun., 2022, 8: 9
|
20 |
Ouyang H B, Li C Y, Huang J F, et al. Self-healing ZrB2-SiO2 oxidation resistance coating for SiC coated carbon/carbon composites [J]. Corros. Sci., 2016, 110: 265
|
21 |
Wang Z, Wang Y M, Wang S Q, et al. ZrSi2/SiO2-Nb2O5/NbSi2 multi-layer coating formed on niobium alloy by HAPC combined with LPDS: Microstructure evolution and high temperature oxidation behavior [J]. Corros. Sci., 2022, 206: 110460
|
22 |
Yan H J, Tai Z F, Wu L K, et al. Improved high-temperature oxidation resistance of TC4 alloy by electrodeposited SiO2 coating [J]. Corros. Commun., 2021, 3: 34
|
23 |
Kim D G, Konar B, Jung I H. Thermodynamic optimization of the K2O-Al2O3-SiO2 system [J]. Ceram. Int., 2018, 44: 16712
|
24 |
Dettenwanger F, Schumann E, Ruhle M, et al. Microstructural study of oxidized γ-TiAl [J]. Oxid. Met., 1998, 50: 269
|
25 |
Shen Y, Ding X F, Wang F G, et al. High temperature oxidation behavior of Ti-Al-Nb ternary alloys [J]. J. Mater. Sci., 2004, 39: 6583
|
26 |
Huang J, Zhao F, Cui X Y, et al. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy [J]. Appl. Surf. Sci., 2022, 582: 152444
|
27 |
Patil R N, Subbarao E C. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400oC [J]. J. Appl. Crystallogr., 1969, 2: 281
|
28 |
McKee D W, Luthra K L. Plasma-sprayed coatings for titanium alloy oxidation protection [J]. Surf. Coat. Technol., 1993, 56: 109
|
29 |
Samsonov G V. The Oxide Handbook [M]. New York: Springer, 2013.
|
30 |
Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
|
31 |
Huffman M, McMillan P. Infrared and Raman studies of chemically vapor deposited amorphous silica [J]. J. Non-Cryst. Solids, 1985, 76: 369
|
32 |
Anastassakis E, Papanicolaou B, Asher I M. Lattice dynamics and light scattering in Hafnia and Zirconia [J]. J. Phys. Chem. Solids, 1975, 36: 667
|
33 |
Carlone C. Raman spectrum of zirconia-hafnia mixed crystals [J]. Phys. Rev., 1992, 45B: 2079
|
34 |
Morant C, Sanz J M, Galán L, et al. An XPS study of the interaction of oxygen with zirconium [J]. Surf. Sci., 1989, 218: 331
|
35 |
Wagner C D, Passoja D E, Hillery H F, et al. Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds [J]. J. Vac. Sci. Technol., 1982, 21: 933
|
36 |
Lancet D, Pecht I. Spectroscopic and immunochemical studies with nitrobenzoxadiazolealanine, a fluorescent dinitrophenyl analog [J]. Biochemistry, 1977, 16: 5150
pmid: 911817
|
37 |
Mattogno G, Righini G, Montesperelli G, et al. XPS analysis of the interface of ceramic thin films for humidity sensors [J]. Appl. Surf. Sci., 1993, 70-71: 363
|
38 |
Dementjev A P, Ivanova O P, Vasilyev L A, et al. Altered layer as sensitive initial chemical state indicator* [J]. J. Vac. Sci. Technol., 1994, 12A: 423
|
39 |
Shalvoy R B, Reucroft P J, Davis B H. Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy [J]. J. Catal., 1979, 56: 336
|
40 |
Chen L, Wang W J, Li J H, et al. Suppressing the phase-transition-induced cracking of SiO2 TGOs by lattice solid solution [J]. J. Eur. Ceram. Soc., 2023, 43: 3201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|