Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1423-1434    DOI: 10.11902/1005.4537.2024.004
Current Issue | Archive | Adv Search |
Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy
WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui(), CAO Fahe
School of Materials, Sun Yat-sen University, Shenzhen 518107, China
Cite this article: 

WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1423-1434.

Download:  HTML  PDF(18270KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Addressing the issue of crack formation in SiO2 coatings during high-temperature oxidation, a supplementary Zr layer was applied onto the SiO2 coating surface through magnetic sputtering. This study revealed that the Zr layer, upon oxidation, transformed into ZrO2, may effectively amend the cracks and voids that emerged during the sintering process of the SiO2 coating. Furthermore, it mitigated the thermal expansion coefficient (TEC) disparity between TiAl and SiO2 coatings. In addition, the ZrO2-SiO2 skeleton structure formed during the oxidation process may be able to improve the stability of the coating structure. The resultant Zr-SiO2 composite coating significantly impeded oxygen inward diffusion from the ambient environment to the Ti45Al8.5Nb substrate, even the outward diffusion of alloy elements in the early stage of oxidation, which notably enhancing its resistance against high-temperature oxidation. Notably, limited growth of oxide particles was observed on the alloy, with a negligible increase in the thickness of oxide scale. Additionally, following a period of 100-hour oxidation at 900oC, mutual element diffusion from both the substrate and coating led to the formation of a three-layered interdiffusion zone (Ti, Nb)O2/Ti5Si3 + Al2O3 + Nb3Al/TiN. This interdiffusion zone notably bolstered the bond strength between the composite coating and the Ti45Al8.5Nb substrate.

Key words:  Zr-SiO2 composite coating      defect inhibition      high-temperature oxidation resistance      elemental diffusion     
Received:  02 January 2024      32134.14.1005.4537.2024.004
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51971205);Guangdong Basic and Applied Basic Research Foundation(2021B1515020056)
Corresponding Authors:  WU Liankui, E-mail: wulk5@mail.sysu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.004     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1423

Fig.1  SEM images (a, b) and EDS analysis (c) of as-prepared Zr-SiO2 composite coating
Fig.2  XRD pattern of as-prepared Zr-SiO2 composite coating
Fig.3  Cross-sectional SEM image (a), element line scannings along the yellow arrow in Fig.3a (b) and element mappings (c) of the as-prepared Zr-SiO2 composite coating
PositionOAlSiTiZrNb
Point 169.50.418.60.610.9-
Point 268.5-28.00.92.7-
Point 369.41.525.43.7--
Point 453.610.416.617.3-2.1
Table 1  Element contents at the marked points in Fig.3a
Fig.4  Oxidation kinetics of Ti45Al8.5Nb alloy without and with SiO2 and Zr-SiO2 coatings during oxidation at 900oC in air (a), and surface XRD pattern of Zr-SiO2 composite coating after oxidation for 100 h (b)
Fig.5  Surface SEM images of Ti45Al8.5Nb alloy (a, d), SiO2 coating (b, e), and Zr-SiO2 composite coating (c, f) after isothermal oxidation at 900oC for 100 h
PositionTiAlNbSiZrKO
Area 16.227.0----66.9
Area 24.912.8-19.7-1.460.5
Area 31.91.8-10.622.30.562.9
Point 10.80.61.034.6-0.362.8
Point 28.817.81.11.4-0.870.1
Point 30.7--14.836.6-48.0
Point 46.518.8-2.07.20.764.7
Table 2  Element contents at the marked regions and points in Fig.5
Fig.6  Cross-sectional SEM image (a), element line scannings along the yellow arrow in Fig.6a (b) and element mappings (c) of Zr-SiO2 composite coating oxidized at 900oC for 100 h
PositionOAlSiTiZrNb
Point 182.10.49.40.97.2-
Point 271.31.317.83.75.5-
Point 373.01.917.24.82.8-
Point 469.04.68.416.4-1.5
Point 542.513.36.734.7-2.7
Point 621.020.711.139.7-7.5
Table 3  Element contents at the marked points in Fig.6a
Fig.7  EPMA elemental distributions of the cross section of Zr-SiO2 composite coating oxidized at 900oC for 100 h
Fig.8  Raman spectrum (a), optical surface morphology (b) and Raman spectra of the marked positions 1 (c) and 2 (d) in Fig.8b for SiO2 coating (a) and Zr-SiO2 composite coating (b-d) after oxidation at 900oC for 100 h
This workRef. [29]Ref. [30]Ref. [31]
Position 1446430
611600
Position 2149148T
181179177
192190189
225222222
268270266T
309305306
338334335
351348347
388381382
408
481476476
507500502
537534537
567557559
619615616
642637637
Table 4  Comparison of peak positions of Raman spectra at the points 1 and 2 in Fig.8b and corresponding literature data (T represents tetragonal ZrO2).
Fig.9  Surface XPS analysis results of Zr-SiO2 composite coating oxidized at 900℃ for 100 h: (a) full spectrum and semi-quantitative element content analysis, and fine spectra of (b) Zr, (c) Si, (d) Al, (e) Ti, (f) O and (g) K
Fig.10  Schematic diagrams of the changes of microstructures and phase compositions of SiO2 coating (a) and Zr-SiO2 composite coating (b) during initial sintering and subsequent isothermal oxidation
1 Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys [J]. Intermetallics, 2000, 8: 1283
2 Peng X M, Xia C Q, Wang Z H, et al. Development of high temperature oxidation and protection of TiAl-based alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 1116
(彭小敏, 夏长清, 王志辉 等. TiAl基合金高温氧化及防护的研究进展 [J]. 中国有色金属学报, 2010, 20: 1116)
3 Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
4 Zheng N, Fischer W, Grübmeier H, et al. The significance of sub-surface depletion layer composition for the oxidation behaviour of γ-titanium aluminides [J]. Scr. Metall. Mater., 1995, 33: 47
5 Lin J P, Zhang L Q, Song X P, et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds [J]. Mater. China, 2010, 29: 1
(林均品, 张来启, 宋西平 等. 轻质γ-TiAl金属间化合物的研究进展 [J]. 中国材料进展, 2010, 29: 1)
6 Dong L M, Cui Y Y, Yang R, et al. Effects of element Si on oxidation resistance of TiAl alloys [J]. Acta Metall. Sin., 2004, 40: 383
(董利民, 崔玉友, 杨 锐 等. 元素Si对TiAl合金抗氧化性能的影响 [J]. 金属学报, 2004, 40: 383)
7 Li D X, Zhang G Y, Lu G, et al. Optimizing high-temperature oxidation behaviors of high-Nb-containing TiAl alloys by addition of boron [J]. Corros. Sci., 2020, 177: 108971
8 Zhang C, Zhang S H, Pan Y, et al. Effect of Sn addition on the mechanical properties and high-temperature oxidation resistance of intermetallic TiAl alloys by first principles study and experimental investigation [J]. J. Mater. Res. Technol., 2022, 21: 3666
9 Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: a review [J]. Corros. Commun., 2021, 1: 58
10 Tian S W, Zhang Y F, He A R, et al. Interdiffusion mechanism at the interface between TiAl alloy and NiCoCrAlY bond coating [J]. Surf. Coat. Technol., 2022, 444: 128687
11 Wang C X, Huang J N, Wang Y L. Preparation and properties of α-Al2O3 diffusion barrier on stainless steel 316 [J]. Corros. Commun., 2022, 8: 18
12 Yang L L, Gao F Y, Zhou Z H, et al. Oxidation behavior of the AlN coatings on the TiAl alloy at 900 C [J]. Corros. Sci., 2023, 211: 110891
13 Yang Y F, Xiao Q, Ren P, et al. Improved oxidation resistance of γ-TiAl intermetallics by sputtered Ni + CrAlYHfSiN composite coating [J]. Corros. Sci., 2021, 187: 109510
14 Ai P, Liu L X, Li X G, et al. Influence of TiAlSiN coatings on high temperature oxidation resistance of γ-TiAl based alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 306
(艾 鹏, 刘礼祥, 李晓罡 等. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 306)
15 Xia J J, Niu H Z, Liu M, et al. Enhancement of high temperature oxidation resistance of Ti48Al5Nb alloy via anodic anodization in NH4F containing ethylene glycol [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 96
(夏俊捷, 牛红志, 刘 敏 等. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能 [J]. 中国腐蚀与防护学报, 2019, 39: 96)
doi: 10.11902/1005.4537.2018.188
16 Yu B, Li Z, Zhou K X, et al. High-temperature performance of MoSi2 modified YGYZ thermal barrier coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 812
(宇 波, 李 彰, 周凯旋 等. MoSi2改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 812)
17 Wu L K, Wu W Y, Song J L, et al. Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film [J]. Corros. Sci., 2018, 140: 388
18 Yan H J, Wu L K, Cao F H. Development of SiO2-based protective coatings on TiAl alloy [J]. Mater. China, 2022, 41: 345
(严豪杰, 伍廉奎, 曹发和. TiAl合金表面SiO2防护涂层研究进展 [J]. 中国材料进展, 2022, 41: 345)
19 Chen L, Li J H, Wang G Q, et al. Improving oxidation resistance of Si coating by isolated-particle healing [J]. Corros. Commun., 2022, 8: 9
20 Ouyang H B, Li C Y, Huang J F, et al. Self-healing ZrB2-SiO2 oxidation resistance coating for SiC coated carbon/carbon composites [J]. Corros. Sci., 2016, 110: 265
21 Wang Z, Wang Y M, Wang S Q, et al. ZrSi2/SiO2-Nb2O5/NbSi2 multi-layer coating formed on niobium alloy by HAPC combined with LPDS: Microstructure evolution and high temperature oxidation behavior [J]. Corros. Sci., 2022, 206: 110460
22 Yan H J, Tai Z F, Wu L K, et al. Improved high-temperature oxidation resistance of TC4 alloy by electrodeposited SiO2 coating [J]. Corros. Commun., 2021, 3: 34
23 Kim D G, Konar B, Jung I H. Thermodynamic optimization of the K2O-Al2O3-SiO2 system [J]. Ceram. Int., 2018, 44: 16712
24 Dettenwanger F, Schumann E, Ruhle M, et al. Microstructural study of oxidized γ-TiAl [J]. Oxid. Met., 1998, 50: 269
25 Shen Y, Ding X F, Wang F G, et al. High temperature oxidation behavior of Ti-Al-Nb ternary alloys [J]. J. Mater. Sci., 2004, 39: 6583
26 Huang J, Zhao F, Cui X Y, et al. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy [J]. Appl. Surf. Sci., 2022, 582: 152444
27 Patil R N, Subbarao E C. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400oC [J]. J. Appl. Crystallogr., 1969, 2: 281
28 McKee D W, Luthra K L. Plasma-sprayed coatings for titanium alloy oxidation protection [J]. Surf. Coat. Technol., 1993, 56: 109
29 Samsonov G V. The Oxide Handbook [M]. New York: Springer, 2013.
30 Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
31 Huffman M, McMillan P. Infrared and Raman studies of chemically vapor deposited amorphous silica [J]. J. Non-Cryst. Solids, 1985, 76: 369
32 Anastassakis E, Papanicolaou B, Asher I M. Lattice dynamics and light scattering in Hafnia and Zirconia [J]. J. Phys. Chem. Solids, 1975, 36: 667
33 Carlone C. Raman spectrum of zirconia-hafnia mixed crystals [J]. Phys. Rev., 1992, 45B: 2079
34 Morant C, Sanz J M, Galán L, et al. An XPS study of the interaction of oxygen with zirconium [J]. Surf. Sci., 1989, 218: 331
35 Wagner C D, Passoja D E, Hillery H F, et al. Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds [J]. J. Vac. Sci. Technol., 1982, 21: 933
36 Lancet D, Pecht I. Spectroscopic and immunochemical studies with nitrobenzoxadiazolealanine, a fluorescent dinitrophenyl analog [J]. Biochemistry, 1977, 16: 5150
pmid: 911817
37 Mattogno G, Righini G, Montesperelli G, et al. XPS analysis of the interface of ceramic thin films for humidity sensors [J]. Appl. Surf. Sci., 1993, 70-71: 363
38 Dementjev A P, Ivanova O P, Vasilyev L A, et al. Altered layer as sensitive initial chemical state indicator* [J]. J. Vac. Sci. Technol., 1994, 12A: 423
39 Shalvoy R B, Reucroft P J, Davis B H. Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy [J]. J. Catal., 1979, 56: 336
40 Chen L, Wang W J, Li J H, et al. Suppressing the phase-transition-induced cracking of SiO2 TGOs by lattice solid solution [J]. J. Eur. Ceram. Soc., 2023, 43: 3201
[1] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[2] ANG Dongsheng TIAN Zongjun CHEN Zhiyong SHEN Lida WU Hongyan ZHANG Pingze LIU . HIGH-TEMPERATURE OXIDATION RESISTANCE COATINGS ON TiAl ALLOY SURFACE[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
No Suggested Reading articles found!