Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1412-1422    DOI: 10.11902/1005.4537.2024.051
Current Issue | Archive | Adv Search |
Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel
WANG Yali1,2, GUAN Fang1,3,4(), DUAN Jizhou1(), ZHANG Lina1, YANG Zhengxian3, HOU Baorong1
1. Key laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Science, Beijing 100049, China
3. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
4. Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China
Cite this article: 

WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1412-1422.

Download:  HTML  PDF(10954KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The synergistic effect of 2,2-dibromo-3-hypoazopropionamide (DBNPA) and rhamnolipid (RL) on the corrosion behavior of X80 pipeline steel in solutions containing sulfate reducing bacteria (SRB) Desulfovibrio bizertensis SY-1 was investigated. The results showed that compared with a sterile solution, the mass loss and pitting depth of X80 pipeline steel significantly increased in the presence of Desulfovibriobizertensis SY-1, while corrosion product FeS was detected on steel surface. However, the addition of DBNPA effectively inhibited the growth of planktonic and sessile bacterial cells, thereby retarding the corrosion process on X80 pipeline steel. Notably, when 150 mg/L DBNPA and 500 mg/L RL were co-added in the solution, the corrosion rate of X80 pipeline steel decreased by 77.8% compared to that in the SRB (p = 0.009) containing solution, whilst, by 50% compared to that in the SRB containing solution with addition of 300 mg/L DBNPA alone. Furthermore, this combination also led to an approximately 84.7% reduction in corrosion current density even after 15 days' immersion compared to that in the SRB containing solution, and about 20.5% reduction compared to that in the SRB containing solution with addition of 300 mg/L DBNPA alone. Therefore, these findings found that the cooperative addition of 150 mg/L DBNPA and 500 mg/L RL can effectively inhibit the corrosion of X80 pipeline steel induced by Desulfovibrio bizertensis SY-1. The results may provide references for selecting and utilizing biocides.

Key words:  sulfate reducing bacteria      microbiologically influenced corrosion      DBNPA      RL      X80 pipeline steel     
Received:  17 February 2024      32134.14.1005.4537.2024.051
ZTFLH:  TG174  
Fund: Fujian Ocean and Fishery Bureau(FJHJF-L-2022-19);Youth Science Foundation of Guangxi province(2023GXNSFBA026252);Natural Science Foundation of Shandong Province(ZR2023MD024);National Natural Science Foundation of China(42476209)
Corresponding Authors:  GUAN Fang, E-mail: guanfang@qdio.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.051     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1412

Fig.1  pH (a), OD600 (b), planktonic bacteria (c) and sessile bacteria (d) counts of X80 coupons after immersion in different media for 15 d
Fig.2  Corrosion morphologies of X80 coupons after immersion in sterile (a), sterile + 500 mg/L RL (b), SRB (c), SRB + 500 mg/L RL (d), SRB + 150 mg/L DBNPA (e), SRB + 300 mg/L DBNPA (f), SRB + 150 mg/L DBNPA + 500 mg/L RL (g) media for 15 d
Fig.3  Corrosion rates of X80 coupons during immersion in different media for 15 d
Fig.4  Maximum depths of corrosion pits of X80 coupons immersed in different media for 15 d: (a1, a2) sterile, (b1, b2) sterile + 500 mg/L RL, (c1, c2) SRB + 500 mg/L RL, (d1, d2) SRB + 500 mg/L RL, (e1, e2) SRB + 150 mg/L DBNPA, (f1, f2) SRB + 150 mg/L DBNPA + 500 mg/L RL, (g1, g2) SRB + 300 mg/L RL
Fig.5  XRD patterns of X80 coupons after 15 d immersion in different media
Fig.6  XPS fine peaks of C 1s (a), Fe 2p (b), O 1s (c), and S 2p (d) of corrosion products formed on X80 coupons after immersion in different media for 15 d
ConditionsC 1sFe 2pO 1sN 1sS 2p
Sterile42.788.4046.241.361.22
Sterile + 500 mg/L RL37.8213.1246.621.391.05
SRB54.323.9434.185.691.87
SRB + 500 mg/L RL54.083.6034.933.863.53
SRB +150 mg/L DBNPA54.295.3332.866.772.75
SRB + 150 mg/L DBNPA+500 mg/L RL52.386.4432.356.132.71
SRB + 300 mg/L DBNPA46.867.1736.476.852.64
Table 1  XPS determined contents of various elements of corrosion products formed on X80 coupons immersed in different media
Fig.7  Open circuit potentials of X80 coupons after 15 d immersion in various media
Fig.8  Potentiodynamic polarization curves of X80 coupons after 15 d immersion in various media
ParameterEcorr / mV vs. SCEIcorr / µA·cm-2βa / mV·dec-1βc / mV·dec-1
Sterile-7212.1158.3-126.2
Sterile + 500 mg/L RL-6733.3277.3-135.5
SRB-62117.6350.6-105.7
SRB + 500 mg/L RL-6698.9208.4-108.7
SRB + 150 mg/L DBNPA-6556.8190.0-146.6
SRB + 150 mg/L DBNPA + 500 mg/L RL-6882.7194.4-148.6
SRB + 300 mg/L DBNPA-6636.3311.4-131.4
Table 2  Fitting parameters of potentiodynamic polarization curves of X80 coupons in different media
1 Skovhus T L, Eckert R B, Rodrigues E. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study [J]. J. Biotechnol., 2017, 256: 31
doi: S0168-1656(17)31515-8 pmid: 28687514
2 Al-Nabulsi K M, Al-Abbas F M, Rizk T Y, et al. Microbiologically assisted stress corrosion cracking in the presence of nitrate reducing bacteria [J]. Eng. Failure Anal., 2015, 58: 165
3 Fu A Q, Yuan J T, Li X P, et al. Gathering pipeline corrosion of oil and gas field and its anti-corrosion technologies [J]. Pet. Tubular Goods Instrum., 2021, 7(6): 14
(付安庆, 袁军涛, 李轩鹏 等. 油气田地面管道内腐蚀现状及防腐技术研究进展 [J]. 石油管材与仪器, 2021, 7(6): 14)
4 Fan R X, Yan H Y, Qiu Z J, et al. Internal corrosion risk and solution of offshore oilfield pipeline [J]. Total Corros. Control, 2019, 33(12): 102
(樊荣兴, 闫化云, 仇朝军 等. 海洋石油海底管道面临的内腐蚀风险及对策 [J]. 全面腐蚀控制, 2019, 33(12): 102)
5 Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
6 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
7 Starosvetsky J, Starosvetsky D, Pokroy B, et al. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling [J]. Corros. Sci., 2008, 50: 540
8 Liu F L, Zhang J, Sun C X, et al. The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud [J]. Corros. Sci., 2014, 83: 375
9 Jacobson G A. Corrosion at Prudhoe Bay - A lesson on the line [J]. Mater. Perform., 2007, 46: 26
10 Wen X. Present situation and development trend of inhibiting microbial corrosion in oil field [J]. Total Corros. Control, 2022, 36(3): 83
(温 雪. 抑制油田微生物腐蚀的现状与发展趋势 [J]. 全面腐蚀控制, 2022, 36(3): 83)
11 Wang Z Q, Li Y T, Ren J, et al. Investigating the effects of environment, corrosion degree, and distribution of corrosive microbial communities on service-life of refined oil pipelines [J]. Environ. Sci. Pollut. Res. Int., 2022, 29: 52204
12 Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 1
(董续成, 管 方, 徐利婷 等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 1)
doi: 10.11902/1005.4537.2019.241
13 Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J]. Environ. Microbiol., 2012, 14: 1772
doi: 10.1111/j.1462-2920.2012.02778.x pmid: 22616633
14 Wu T Q, Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅱ) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
(吴堂清, 杨 圃, 张明德 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅱ)腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353)
doi: 10.11902/1005.4537.2014.045
15 Hou B R, Yan J, Wang Y L, et al. Status and trend of microbiologically influenced corrosion and control technologies of pipelines in oil and gas field exploitation [J]. Chem. Eng. Oil Gas, 2022, 51(5): 71
(侯保荣, 闫 静, 王娅利 等. 油气田开采中管道微生物腐蚀防护技术研究现状与趋势 [J]. 石油与天然气化工, 2022, 51(5): 71)
16 Li Z, Yuan X Y, Sun M Y, et al. Rhamnolipid as an eco-friendly corrosion inhibitor for microbiologically influenced corrosion [J]. Corros. Sci., 2022, 204: 110390
17 Struchtemeyer C G, Morrison M D, Elshahed M S. A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells [J]. Int. Biodeterior. Biodegrad., 2012, 71: 15
18 Xue Y, Voordouw G. Control of microbial sulfide production with biocides and nitrate in oil reservoir simulating bioreactors [J]. Front. Microbiol., 2015, 6: 1387
doi: 10.3389/fmicb.2015.01387 pmid: 26696994
19 Wang D, Ramadan M, Kumseranee S, et al. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57: 146
doi: 10.1016/j.jmst.2020.02.087
20 Nitschke M, Costa S G V A O, Contiero J. Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules [J]. Biotechnol. Prog., 2005, 21: 1593
21 Zhao F, Dong M, Qu W H. Advances in optimization strategies for microbial high production of rhamnolipids [J]. Microbiol. China, 2022, 49: 373
(赵 峰, 董 梅, 曲文豪. 微生物合成鼠李糖脂的高产优化策略研究进展 [J]. 微生物学通报, 2022, 49: 373)
22 Unsal T, Wang D, Kumseranee S, et al. D-Tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm [J]. World J. Microbiol. Biotechnol., 2021, 37: 103
23 Du J, Hao J A, Zhang X Q, et al. Research progress in biosynthesis of Rhamnolipid biosurfactant [J]. Chem. Bioeng., 2015, 32(4): 5
(杜 瑾, 郝建安, 张晓青 等. 微生物合成鼠李糖脂生物表面活性剂的研究进展 [J]. 化学与生物工程, 2015, 32(4): 5)
24 Dong X C, Zhai X F, Zhang Y M, et al. Steel rust layers immersed in the South China Sea with a highly corrosive Desulfovibrio strain [J]. npj Mater. Degrad., 2022, 6: 91
25 Yu L, Duan J Z, Du X Q, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry [J]. Electrochem. Commun., 2013, 26: 101
26 Guan F, Duan J Z, Zhai X F, et al. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
doi: 10.1016/j.jmst.2019.07.009
27 Jia R, Wang D, Jin P, et al. Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2019, 153: 127
doi: 10.1016/j.corsci.2019.03.038
28 Zhao R L, Wang B, Li D B, et al. Effect of sulfate-reducing bacteria from salt scale of water flooding pipeline on corrosion behavior of X80 steel [J]. Eng. Failure Anal., 2022, 142: 106788
29 Dong X C, Zhai X F, Yang J, et al. Two metabolic stages of SRB strain Desulfovibrio bizertensis affecting corrosion mechanism of carbon steel Q235 [J]. Corros. Commun., 2023, 10: 56
30 ASTM. Standard practice for preparing, cleaning, and evaluating corrosion test specimens [S]. ASTM, 2003
31 Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
32 Dou W W, Xu D K, Gu T Y. Biocorrosion caused by microbial biofilms is ubiquitous around us [J]. Microb. Biotechnol., 2021, 14: 803
doi: 10.1111/1751-7915.13690 pmid: 33320430
33 Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy [J]. Surf. Coat. Technol., 2017, 316: 171
34 Genchev G, Erbe A. Raman spectroscopy of mackinawite FeS in anodic iron sulfide corrosion products [J]. J. Electrochem. Soc., 2016, 163: C333
35 Mullet M, Guillemin Y, Ruby C. Oxidation and deprotonation of synthetic FeII-FeIII (oxy)hydroxycarbonate Green Rust: an X-ray photoelectron study [J]. J. Solid State Chem., 2008, 181: 81
36 Sheng X, Ting Y P, Pehkonen S O. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals [J]. J. Colloid Interface Sci., 2008, 321: 256
37 Dong X C. Study on corrosion mechanism of SRB in sea rust layer on Fe() and application of metabolic FeS [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2023
(董续成. 实海锈层SRB对Fe()腐蚀机理及其代谢FeS应用研究 [D]. 青岛: 中国科学院海洋研究所, 2023)
38 Liu H F, Yang H X, Huang L, et al. An environmentally friendly bromine-based bactericide and its antibacterial and anticorrosion performance [J]. Mater. Prot., 2008, 41(7): 18
(刘宏芳, 杨华啸, 黄 玲 等. 环境友好型溴类杀菌剂的合成及其抗菌防腐蚀性能研究 [J]. 材料保护, 2008, 41(7): 18)
39 Barros A C, Melo L F, Pereira A. A Multi-purpose approach to the mechanisms of action of two biocides (benzalkonium chloride and dibromonitrilopropionamide): discussion of Pseudomonas fluorescens’Viability and Death [J]. Front. Microbiol., 2022, 13: 842414
40 ІPokhmurs’kyi V, Karpenko О V, Zin’ І М, et al. Inhibiting action of biogenic surfactants in corrosive media [J]. Mater. Sci., 2014, 50: 448
41 Wood T L, Gong T, Zhu L, et al. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria [J]. npj Biofilms Microbiomes, 2018, 4: 22
42 Feng Y, Xiu J L, Yi L N, et al. Optimization of fermentation conditions and evaluation of oil displacement potential of an oil producing functional strain [J]. Appl. Chem. Ind., 2023, 52: 795
(冯 艳, 修建龙, 伊丽娜 等. 鼠李糖脂产量的提高及采油应用研究 [J]. 应用化工, 2023, 52: 795)
[1] KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei. Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[2] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[3] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[4] WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[5] MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[6] LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[7] HE Yongjun, ZHANG Tiansui, WANG Haitao, ZHANG Fei, LI Guangfang, LIU Hongfang. Research Progress of Biocides for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[8] LV Meiying, LI Zhenxin, DU Min, WAN Zixuan. Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[9] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[10] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[11] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[12] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[13] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[14] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[15] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
No Suggested Reading articles found!