Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1263-1273    DOI: 10.11902/1005.4537.2023.373
Current Issue | Archive | Adv Search |
Corrosion Behavior of Four Steels for Landing Gear of Amphibious Aircraft in Simulated Seawater
ZHAO Lianhong(), WANG Yingqin, LIU Yuanhai, HE Weiping, WANG Haowei
The Key Aeronautic Scientific & Technologic Laboratory of Structure Corrosion Protection and Control, China Special Vehicle Research Institute, Jingmen 448035, China
Cite this article: 

ZHAO Lianhong, WANG Yingqin, LIU Yuanhai, HE Weiping, WANG Haowei. Corrosion Behavior of Four Steels for Landing Gear of Amphibious Aircraft in Simulated Seawater. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1263-1273.

Download:  HTML  PDF(17542KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of four steels 30CrMnSiA, 30CrMnSiNi2A, 300M and A100 for amphibious aircraft landing gear in an artificial seawater was studied through immersion testing, electrochemical methods, microscopic morphology, three-dimensional morphology observation, and corrosion product characterization. In addition, the effect of pre-corrosion on the corrosion fatigue performance of the four steels was also investigated. The results show that the electrochemical behavior of the four steels is similar: i.e. the anodic curve exhibits active dissolution characteristics, and the cathodic process is dominated by oxygen reduction reaction. The corrosion rate of the four steels may be ranked in the following order: 30CrMnSiNi2A > 300M > 30CrMnSiA > A100. Their corrosion products are consisted mainly of α-FeOOH, γ-FeOOH, α-Fe2O3, and Fe3O4. The four steels show uniform corrosion characteristics in artificial seawater environment. After a pre-corrosion treatment, the fatigue property of the steels 30CrMnSiA, 30CrMnSiNi2A and 300M may be deteriorated, but A100 steel is suffered from little effect. The A100 steel presents better seawater corrosion resistance than the other three, mainly because its much higher Co, Ni and Cr content, so that results in corrosion products of better protection performance.

Key words:  steels for landing gear      artificial seawater      corrosion product      electrochemical behavior      corrosion fatigue     
Received:  23 November 2023      32134.14.1005.4537.2023.373
ZTFLH:  TM207  
Corresponding Authors:  ZHAO Lianhong, E-mail: zhaolianhongmail@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.373     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1263

MaterialCCrMnNiSiMoVFe
30CrMnSiNi2A steel0.27-0.340.90-1.201.00-1.301.40-1.800.90-1.20--Bal.
30CrMnSiA steel0.28-0.340.80-1.100.80-1.10≤0.0300.90-1.20--Bal.
300M steel0.41-0.460.65-0.950.65-0.901.60-2.001.45-1.800.30-0.400.05-0.10Bal.
A100 steel0.21-0.272.50-3.30≤0.1011.0-12.0≤0.101.00-1.30(Co)13.3-13.5Bal.
Table1  Chemical compositions of ultra-high strength steel (mass fraction / %)
Fig.1  OM and SEM images of 30CrMnSiA (a), 30CrMnSiNi2A (b), 300M (c) and A100 (d) steels
Fig.2  Diagram of corrosion fatigue specimen
Fig.3  Electrochemical test results of the four types of steel: (a) open circuit potential plot, (b) potentiodynamic polarization curves, (c) Nyquist plots, (d) equivalent circuit for EIS test
MaterialEcorr / VSCEIcorr / μA·cm-2
30CrMnSiA steel-0.7624150.330
30CrMnSiNi2A steel-0.715225.967
300M steel-0.690021.457
A100 steel-0.51028.554
Table 2  Fitted electrochemical parameters for PDP
Fig.4  Macro-morphologies of 30CrMnSiA (a), 30CrMnSiNi2A (b), 300M (c) and A100 (d) steels after immersion for 28 d
Material

Rs

Ω·cm2

CPEdl

Ω-1·cm-2·s-n

n1

Rct

Ω·cm2

CPEf

Ω-1·cm-2·s-n

n2

Rf

Ω·cm2

Rp

Ω·cm2

Model
30CrMnSiA steel5.93.19 × 10-40.8230.02.06 × 10-30.4794.51024.5B
30CrMnSiNi2A steel6.21.72 × 10-30.6704.85.91 × 10-40.8377.71082.5B
300M steel8.17.61 × 10-40.7733.3---733.3A
A100 steel7.32.493 × 10-40.87974---7974A
Table 3  Fitted electrochemical parameters for EIS
Fig.5  Corrosion rate of the four types of steel obtained by mass loss after immersion for 28 d
Fig.6  XRD patterns of 30CrMnSiA (a), 30CrMnSiNi2A (b), 300M (c) and A100 (d) steels after immersion for 28 d
Fig.7  Micro-morphologies of corrosion products (a1-d1, a2-d2), corrosion surface morphologies (a3-d3) and 3D morphologies (a4-d4) after removal corrosion products of 30CrMnSiA (a1-a4), 30CrMnSiNi2A (b1-b4), 300M (c1-c4) and A100 (d1-d4) steels after immersion for 28 d
Fig.8  Cross section morphology and corresponding elemental mapping of 30CrMnSiA (a), 30CrMnSiNi2A (b), 300M (c) and A100 (d) steels after immersion for 28 d in ASW
MaterialCOFeCaClSiCrMnNiCo
30CrMnSiA steel60.820.614.43.80.10.3----
30CrMnSiNi2A steel54.515.025.73.20.10.60.10.8--
300M steel59.817.117.74.00.10.50.5(Mg)-0.3-
A100 steel54.516.616.16.0-0.3(Na)0.7-2.13.3
Table 4  Element content in EDS results for cross sections of four steels (atomic fraction / %)
Fig.9  Corrosion fatigue fracture morphologies of 30CrMnSiA (a1-a3), 30CrMnSiNi2A (b1-b3), 300M (c1-c3) and A100 (d1-d3) steels after 28 d of pre-corrosion
Fig.10  Fatigue life of the four types of steel before and after pre-corrosion
1 Tomita Y. Development of Fracture toughness of ultrahigh Strength low alloy steels for aircraft and aerospace applications [J]. Mater. Sci. Technol., 1991, 7: 481
2 Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment [J]. J. Mater. Eng., 2012, 40(1): 42
于 美, 董 宇, 王瑞阳 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为 [J]. 材料工程, 2012, 40(1): 42
3 Montoya P, Díaz I, Granizo N, et al. An study on accelerated corrosion testing of weathering steel [J]. Mater. Chem. Phys., 2013, 142: 220
4 Liu J H, Wen C, Yu M, et al. Manifestations in corrosion prophase of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solutions [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2014, 29: 367
5 Yu X M, Huang Y L, Yadav A P, et al. Study on the temperature dependence of pitting behaviour of AISI 4135 steel in marine splash zone [J]. Electrochemistry, 2015, 83: 541
6 Guo Q, Liu J H, Yu M, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity [J]. Acta Metall. Sin. Engl. Lett., 2015, 28: 139
7 Palin-Luc T, Pérez-Mora R, Bathias C, et al. Fatigue crack initiation and growth on a steel in the very high cycle regime with sea water corrosion [J]. Eng. Fract. Mech., 2010, 77: 1953
8 Zhao W M, Wang Y X, Zhang T M, et al. Study on the mechanism of high-cycle corrosion fatigue crack initiation in X80 steel [J]. Corros. Sci., 2012, 57: 99
9 Yang J, Wang T S, Zhang B, et al. High-cycle bending fatigue behaviour of nanostructured bainitic steel [J]. Scr. Mater., 2012, 66: 363
10 Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
11 Tian H Y, Xin J C, Li Y, et al. Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater [J]. Corros. Sci., 2019, 158: 108089
12 Wang Z F, Yin F X, Wu L X, et al. Corrosion resistance on high strength bainitic steel and 09CuPCrNi after wet-dry cyclic conditions [J]. J. Iron Steel Res. Int., 2013, 20: 72
13 Liu Z J, Cheng X Q, Lv S J, et al. Evaluation and comparison of corrosion behavior on 20 & 08 carbon steels in simulated circulating cooling water [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 289
刘佐嘉, 程学群, 吕胜杰 等. 20钢与08碳钢的循环水腐蚀行为评价对比 [J]. 中国腐蚀与防护学报, 2011, 31: 289
14 Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
doi: 10.11902/1005.4537.2019.272
15 Shen S Y, Wang D S, Sun S B, et al. Corrosion behavior in artificial seawater of subzero treated EH40 marine steel suitable for extremely cold environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 151
沈树阳, 王东胜, 孙士斌 等. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响 [J]. 中国腐蚀与防护学报, 2020, 40: 151
doi: 10.11902/1005.4537.2019.010
16 Fu G Q, Zhu M Y, Gao X L. Rust layer formed on low carbon weathering steels with different Mn, Ni contents in environment containing chloride ions [J]. Mater. Sci. Medzg., 2016, 22: 501
17 De La Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
18 De La Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
19 Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
20 Diaz I, Cano H, De La Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
21 Dong B J, Liu W, Zhang T Y, et al. Corrosion failure analysis of low alloy steel and carbon steel rebar in tropical marine atmospheric environment: Outdoor exposure and indoor test [J]. Eng. Fail. Anal., 2021, 129: 105720
22 Deslouis C, Falaras P, Gil O, et al. Influence of clay on calcareous deposit in natural and artificial sea water [J]. Electrochim. Acta, 2006, 51: 3173
23 Zhang J, Yu Z H, Zhao X, et al. The interaction of biofoulants and calcareous deposits on corrosion performance of Q235 in seawater [J]. Materials, 2020, 13: 850
24 Xu H B, Li L, Peng L N, et al. Effect of the calcareous deposits on the stress corrosion cracking behavior of 10Ni5CrMoV high strength steel in deep-sea environment [J]. Int. J. Electrochem. Sci., 2021, 16: 210536
25 Ramana K V S, Kaliappan S, Ramanathan N, et al. Characterization of rust phases formed on low carbon steel exposed to natural marine environment of Chennai harbour - South India [J]. Mater. Corros., 2007, 58: 873
26 Qian A, Jin P, Tan X M, et al. Corrosion and electrochemical properties of AerMet100 steel in salt fog [J]. Surf. Technol., 2018, 47(10): 231
钱 昂, 金 平, 谭晓明 等. AerMet100钢在盐雾中的腐蚀与电化学特性 [J]. 表面技术, 2018, 47(10): 231
27 Liu Z G, Gao X H, Li J P, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
28 Yuan R, Wu H B, Gu Y. Effect of alloyed Cr on corrosion behavior of low-alloy steel in wet atmosphere [J]. Mater. Corros., 2022, 73: 918
29 Wen C, Tian Y W, Wang G, et al. The influence of nickel on corrosion behavior of low alloy steel in a cyclic wet-dry condition [J]. Int. J. Electrochem. Sci., 2016, 11: 4161
30 Gao X L, Fu G Q, Zhu M Y. Effect of nickel on ion-selective property of rust formed on low-alloying weathering steel [J]. Acta. Metall. Sin. Engl. Lett., 2012, 25: 295
31 Zhang W, Zhang X, Qiao G J, et al. Effect of cobalt on the microstructure and corrosion behavior of martensitic age-hardened stainless steel [J]. J. Mater. Eng. Perform., 2019, 28: 4197
doi: 10.1007/s11665-019-04185-x
[1] DU Guang, LU Guoqiang, DENG Longhui, JIANG Jianing, CAO Xueqiang. Effect of Aluminum Content on Corrosion Behavior of Ni-Al Alloys in Dilute Sulfuric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[2] WU Yang, AN Yiqiang, WANG Liwei, CUI Zhongyu. Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[3] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[4] ZHANG Yunjun, JIANG Youwei, ZHANG Zhongyi, LV Naixin, CHEN Junwei, LIAN Guofeng. Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[5] LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[6] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[7] HE Yi, ZHENG Chuanbo, QI Haoyu, LIU Zhenguang. Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[8] HE Xun, WU Mengxue, YIN Li, ZHU Jin. Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[9] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[10] CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[11] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[12] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[13] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[14] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[15] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
No Suggested Reading articles found!