Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 480-488    DOI: 10.11902/1005.4537.2023.206
Current Issue | Archive | Adv Search |
Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments
ZHANG Yunjun1, JIANG Youwei1(), ZHANG Zhongyi1, LV Naixin2, CHEN Junwei1, LIAN Guofeng1
1.State Key Laboratory of Enhanced Oil&Gas Recovery, Research Institute of Petroleum Exploration & Development, PetroChina Co., Ltd., Beijing 100083, China
2.Tubular Goods Research Institute, CNPC, Xi'an 710077, China
Cite this article: 

ZHANG Yunjun, JIANG Youwei, ZHANG Zhongyi, LV Naixin, CHEN Junwei, LIAN Guofeng. Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 480-488.

Download:  HTML  PDF(5907KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The initial corrosion behavior of 3Cr alloy steel in urea assisted heavy oil steam huff and puff environments was studied by means of mass loss measurement, macroscopic morphology observation, SEM, EDS, XRD and XPS. The results show that the initial corrosion of 3Cr alloy steel in urea assisted heavy oil steam huff and puff environment is a synergistic corrosion of CO2 (acid gas) and NH3 (alkaline gas) in high temperature steam, showing uniform corrosion characteristics. The corrosion products are mainly FeCO3. When the concentration of urea solution is in the range between 10% and 20%, with the increase of the concentration of urea solution, the amount and compactness of corrosion products all increase. When the concentration of urea solution higher than 30%, the adhesion of the corrosion product scale to the steel substrate becomes weaker with the increase of the concentration of urea solution, as a result, obvious spallation of the formed scales may emerge. If there not crude oil exists in the wellbore environment of the urea assisted steam huff and puff production well, the average corrosion rate of 3Cr alloy steel is higher than the oilfield corrosion control index 0.076 mm/a when the concentration of urea solution is greater than 10%, so that this operating condition is not recommended. In the presence of crude oil, the corrosion rate of 3Cr alloy steel is greater than 0.076 mm/a for 30% urea solution, apparently which cannot meet the requirements of wellbore corrosion control in production wells, therefore, this operating condition is not recommended too. Anyhow, the average corrosion rate of 3Cr alloy steel with crude oil is lower than that without crude oil. The incorporation of crude oil has certain corrosion inhibition effect due to the geometric covering effect. Therefore, it is suggested that the concentration of urea solution should not exceed 10% when designing the site operation scheme.

Key words:  3Cr alloy steel      urea corrosion      corrosion product      heavy oil reservoir      steam huff and puff     
Received:  29 June 2023      32134.14.1005.4537.2023.206
ZTFLH:  TG172  
Fund: National Science and Technology Special Funds of China(2016ZX05012-001)
Corresponding Authors:  JIANG Youwei, E-mail: jiangyw@petrochina.com.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.206     OR     https://www.jcscp.org/EN/Y2024/V44/I2/480

Fig.1  Schematic diagram of the high temperature and high pressure dynamic corrosion experimental equipment
Fig.2  Sample size
NumberUrea solutionTemperature / ℃Decomposition pressure / MPaExperimental pressure / MPaTime / h
15%501.720.11240
210%502.540.11240
320%503.370.12240
430%504.620.14240
55%801.720.18240
610%802.540.19240
720%803.370.21240
830%804.620.23240
Table 1  Experimental program for high temperature and high pressure dynamic corrosion
Fig.3  Corrosion rates of 3Cr alloy steel in urea solutions of different concentrations at 50 and 80oC
Fig.4  Macro appearances of 3Cr alloy steel after corrosion in 5% (a, e), 10% (b, f), 20% (c, g) and 30% (d, h) urea solutions at 50oC (a-d) and 80oC (e-h)
Fig.5  Surface morphologies of 3Cr alloy steel after corrosion in 10% (a), 20% (b) and 30% (c) urea solutions at 50℃
Fig.6  EDS analysis of surface corrosion products of 3Cr alloy steel in different concentrations of urea solution at 50oC: (a) 10%, (b) 20%, (c) 30%
Fig.7  XRD patterns of corrosion products formed on 3Cr alloy steel after corrosion in 10% (a), 20% (b) and 30% (c) urea solutions at 50oC
Fig.8  XPS spectrum of the surface of 3Cr alloy steel after corrosion in 20% urea solution at 50oC
Fig.9  Corrosion rates of 3Cr alloy steel in mixed solutions with different proportions of crude oil and 30% urea solution
Fig.10  Macro appearances of 3Cr alloy steel after corrosion at 50oC (a, b) and 80oC (c, d) in mixed solutions with the different proportions of crude oil and 30% urea solution: (a, c) 9∶1, (b, d) 8∶2
Fig.11  E-pH diagrams of a carbon steel in Fe-H2O-CO2 system at 50oC (a) and 80oC (b)
1 Ren S R, Niu B L, Wang G J, et al. Numerical simulation on urea-assisted steam flooding for heavy oil reservoir[J]. Spec. Oil Gas Reservoirs, 2012, 19(3): 111
任韶然, 牛保伦, 王冠杰 等. 稠油油藏尿素辅助蒸汽驱油数值模拟研究[J]. 特种油气藏, 2012, 19(3): 111
2 Li W H, Liu P C, Shen D H, et al. Three-dimension physical simulation experiment of urea-foam assisted steam flooding in heavy oil reservoir[J]. Pet. Geol. Recovery Effic., 2015, 22(4): 118
李文会, 刘鹏程, 沈德煌 等. 稠油油藏尿素泡沫辅助蒸汽驱三维物理模拟实验[J]. 油气地质与采收率, 2015, 22(4): 118
3 Shen D H, Xie J J, Wang X C. Experimental study and application of urea in steam flooding of heavy oil reservoir[J]. Spec. Oil Gas Reservoirs, 2005, 12(2): 85
沈德煌, 谢建军, 王晓春. 尿素在稠油油藏注蒸汽开发中的实验研究及应用[J]. 特种油气藏, 2005, 12(2): 85
4 Yu Q S, Muhe T, Dong H, et al. Urea-assisted steam stimulation based on orthogonal design of heavy oil reservoir in Xinjiang oilfield[J]. Pet. Geol. Eng., 2019, 33(6): 77
于庆森, 木合塔尔, 董宏 等. 新疆油田稠油油藏基于正交设计的尿素辅助蒸汽吞吐研究[J]. 石油地质与工程, 2019, 33(6): 77
5 Kermani M B, Morshed A B. Carbon dioxide corrosion in oil and gas production—A compendium[J]. Corrosion, 2003, 59: 659
doi: 10.5006/1.3277596
6 Abd El-Lateef H M, Abbasov V M, Aliyeva L I, et al. Corrosion protection of steel pipelines against CO2 corrosion-A review[J]. Chem. J., 2012, 2: 52
7 Sim S, Bocher F, Cole I S, et al. Investigating the effect of water content in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Corrosion, 2014, 70: 185
doi: 10.5006/0944
8 Shi S Z, Dong B J, Zeng D Z, et al. Simulation of the effect of corrosion performance of four types under CO2-assisted steam flooding conditions[J]. J. Southwest Pet. Univ. (Sci. Technol. Ed.), 2018, 40(4): 162
石善志, 董宝军, 曾德智 等. CO2辅助蒸汽驱对四种钢的腐蚀性能影响模拟[J]. 西南石油大学学报(自然科学版), 2018, 40(4):162
doi: 10.11885/j.issn.1674-5086.2017.05.02.02
9 Chen C F, Zhao G X, Yan M L, et al. Characteristics of CO2 corrosion scales on Cr-containing N80 steel[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 335
陈长风, 赵国仙, 严密林 等. 含Cr油套管钢CO2腐蚀产物膜特征[J]. 中国腐蚀与防护学报, 2002, 22: 335
10 Jia Z J, Du C W, Liu Z Y, et al. Effect of pH on the corrosion and electrochemical behavior of 3Cr steel in CO2 saturated NaCl solution[J]. Chin. J. Mater. Res., 2011, 25: 39
贾志军, 杜翠薇, 刘智勇 等. 3Cr低合金钢在含饱和CO2的NaCl溶液中的腐蚀电化学行为[J]. 材料研究学报, 2011, 25: 39
11 Guo S Q, Xu L N, Chang W, et al. Experimental study of CO2 corrosion of 3Cr pipe line steel[J]. Acta Metall. Sin., 2011, 47: 1067
郭少强, 许立宁, 常 炜 等. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47: 1067
doi: 10.3724/SP.J.1037.2011.00048
12 Wang K, Zhang Y Q, Yin Z F, et al. Corrosion behavior of N80 and 3Cr tubing steels in CO2 flooding environment[J]. Corros. Prot., 2015, 36: 706
王 珂, 张永强, 尹志福 等. N80和3Cr油管钢在CO2驱油环境中的腐蚀行为[J]. 腐蚀与防护, 2015, 36: 706
13 Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems[J]. Corros. Sci., 2016, 111: 637
doi: 10.1016/j.corsci.2016.06.003
14 Wu Y Y, Shi S Z, Huang J B, et al. Evaluation of corrosion resistance for low alloy steels in high temperature steam environment with CO2 [J]. Chem. Eng. Oil Gas, 2017, 46(4): 77
邬元月, 石善志, 黄建波 等. 含CO2高温蒸汽环境中低合金钢耐腐蚀性能评价[J]. 石油与天然气化工, 2017, 46(4): 77
15 Zou J N, Pang X L, Gao K W. Crevice corrosion of X70 and 3Cr low alloy steels under supercritical CO2 condition[J]. Acta Metall. Sin., 2018, 54: 537
邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54: 537
doi: 10.11900/0412.1961.2017.00353
16 de Sanctis O, Gómez L, Pellegri N, et al. Behaviour in hot ammonia atmosphere of SiO2-coated stainless steels produced by a sol-gel procedure[J]. Surf. Coat. Technol., 1995, 70: 251
doi: 10.1016/0257-8972(94)02274-T
17 Al-Hashem A, Carew J. The use of electrochemical impedance spectroscopy to study the effect of chlorine and ammonia residuals on the corrosion of copper-based and nickel-based alloys in seawater[J]. Desalination, 2002, 150: 255
doi: 10.1016/S0011-9164(02)00981-5
18 Zhou W, Hua F, Gong C B, et al. Cause analysis of corrosion in rich ammonia system of sour water stripper and countermeasures[J]. Corros. Prot. Petrochem. Ind., 2013, 30(1): 40
周 威, 花 飞, 龚朝兵 等. 污水汽提装置富氨气系统腐蚀原因及对策[J]. 石油化工腐蚀与防护, 2013, 30(1): 40
19 Niu Z Y, Cheng B, Zhao L N. Corrosion law on lining of urea reactor[J]. China Spec. Equip. Saf., 2012, 28(10): 10
牛兆岩, 程 冰, 赵路宁. 尿素合成塔内衬腐蚀规律研究[J]. 中国特种设备安全, 2012, 28(10): 10
20 Tian L B, Zhu Z P, Zhang C L, et al. Urea induced corrosion of 15CrMo steel for water cooled wall tubes in coal-fired power plants[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 114
田龙标, 朱志平, 张春雷 等. 尿素对燃煤电厂水冷壁管15CrMo钢腐蚀特性研究[J]. 中国腐蚀与防护学报, 2019, 39: 114
doi: 10.11902/1005.4537.2018.067
21 Huan Y Q. Corrosion and anti-corrosion measures of high-pressure urea equipment[J]. Chem. Fertil. Des., 2020, 58(1): 30
宦月庆. 尿素高压设备的腐蚀及防腐措施[J]. 化肥设计, 2020, 58(1): 30
22 Huang A R, Zhang W, WANG X L, et al. Corrosion behavior of ferritic stainless steel in high temperature urea environment[J]. Chin. J. Mater. Res., 2020, 34: 712
doi: 10.11901/1005.3093.2020.065
黄安然, 张 伟, 王学林 等. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34: 712
doi: 10.11901/1005.3093.2020.065
23 Wang X L, Huang A R, Li M X, et al. The significant roles of Nb and Mo on enhancement of high temperature urea corrosion resistance in ferritic stainless steel[J]. Mater. Lett., 2020, 269: 127660
doi: 10.1016/j.matlet.2020.127660
24 Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment[J]. Appl. Surf. Sci., 2016, 379: 39
doi: 10.1016/j.apsusc.2016.04.049
25 Tian Y Q, Fu A Q, Hu J G, et al. Corrosion behavior of low Cr steel in CO2/H2S environment[J]. Surf. Technol., 2019, 48(5): 49
田永强, 付安庆, 胡建国 等. 低Cr钢在CO2/H2S环境中的腐蚀行为研究[J]. 表面技术, 2019, 48(5): 49
26 Chen W T, Fan S J, Chen L T, et al. Problem analysis and countermeasures of urea hydrdysis anmoia production system[J]. Clean Coal Technol., 2023, 29(suppl.2) : 103
陈文通, 樊帅军, 陈柳潼 等. 尿素水解制氨系统问题分析与对策[J]. 洁净煤技术, 2023, 29(): 103
27 Zhang B, Zhang X Y, Li M H, et al. Problem analysis for transportation of urea hydrolysis production gas for thermal power plants[J]. Therm. Power Gener., 2015, 44(11): 114
张 波, 张向宇, 李明浩 等. 火电厂尿素水解产品气输送问题分析[J]. 热力发电, 2015, 44(11): 114
28 Lu X. Modeling and pilot test of the urea hydrolysis to ammonia for gas denitration[D]. Beijing: North China Electric Power University (Beijing), 2016
陆 续. 尿素水解制氨过程模型与实验研究[D]. 北京: 华北电力大学(北京), 2016
29 National Energy Administration. SY/T 5329-2012 Water quality standard and practice for analysis of oilfield injecting waters in clastic reservoirs[S]. Beijing: Petroleum Industry Press, 2012: 5
国家能源局. SY/T 5329-2012 碎屑岩油藏注水水质指标及分析方法[S]. 北京: 石油工业出版社, 2012: 5
30 Li M J. Analysis on equipment corrosion and its measures against it in Urea plant[J]. Mod. Chem. Ind., 2006, 26(11): 54
李民杰. 尿素设备腐蚀的影响因素分析及防腐措施[J]. 现代化工, 2006, 26(11): 54
31 Zhang Y J, Lyu N X, Shen D H, et al. Corrosion behavior of N80 steel in urea assisted heavy oil steam huff and puff environment[J]. Surf. Technol., 2023, 52(11): 269
张运军, 吕乃欣, 沈德煌 等. N80钢在尿素辅助稠油蒸汽吞吐环境中的腐蚀行为研究[J], 表面技术, 2023, 52(11): 269
32 Ji E Y, Li A K, Zhang Y H, et al. Effect of crude oils on corrosion behavior of N80 steel[J]. Mater. Prot., 2004, 37(5): 42
姬鄂豫, 李爱魁, 张银华 等. 原油对碳钢腐蚀行为影响的研究[J]. 材料保护, 2004, 37(5): 42
33 Sun C, Sun J B, Wang Y, et al. The effect of crude oil on the chemical properties of aqueous phase was studied by electrochemical method[A]. 2014 National Academic Exchange on Corrosion Electrochemistry and Test Methods Abstract Collection[C]. Harbin, 2014: 54
孙 冲, 孙建波, 王 勇 等. 电化学方法研究原油对水相化学性质的影响[A]. 2014年全国腐蚀电化学及测试方法学术交流会摘要集[C]. 哈尔滨, 2014: 54
[1] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[2] LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[3] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[4] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[5] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[6] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[7] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[8] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[9] WANG Xiaohong, LI Zishuo, TANG Yufeng, TAN Hao, JIANG Yangang. Influence of Cr Content on Characteristics of Corrosion Product Film Formed on Several Steels in Artifitial Stratum Waters Containing CO2-H2S-Cl-[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[10] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[11] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[12] WANG Jiaming, YANG Haodong, DU Min, PENG Wenshan, CHEN Hanlin, GUO Weimin, LIN Cunguo. Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[13] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[14] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[15] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
No Suggested Reading articles found!