Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 119-126    DOI: 10.11902/1005.4537.2022.024
Current Issue | Archive | Adv Search |
Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater
WANG Xiao1, LIU Feng2, LI Yan1(), ZHANG Wei3, LI Xiangbo2
1.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
3.State Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Download:  HTML  PDF(9281KB) 
Export:  BibTeX | EndNote (RIS)      

The corrosion behavior of B10 Cu-Ni alloy in static and dynamic seawater was studied by using a loop test device with in-situ measurement accessory. The corrosion rate, electrochemical characteristics, corrosion morphology and corrosion products of B10 alloy were characterized by means of mass loss method, electrochemical impedance spectroscope (EIS), scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). The results show that the corrosion rate of the alloy in static and dynamic seawater gradually decreased with time, while the formed corrosion product film was compact. The products generated on the B10 alloy in static seawater composed mainly of Cu2O, but NiO, Cu2O and FeOOH for that in flowing seawater. It is noted that the presence of NiO and FeOOH may be beneficial to the reduction of corrosion reaction rate and the enhancement of corrosion resistance of B10 alloy. In other word, the seawater erosion may facilitate the formation of the compact corrosion product film to protect the substrate. The study can provide an experimental basis for the evaluation of the quality corrosion product film on B10 alloy and the service performance of B10 alloy served as pipeline in dynamic seawaters.

Key words:  90/10 copper-nickel pipe      erosion-corrosion      real-time electrochemical testing      corrosion product film     
Received:  20 January 2022     
ZTFLH:  TG174  
Corresponding Authors:  LI Yan, E-mail:   

Cite this article: 

WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 119-126.

URL:     OR

Fig.1  Surface morphologies of B10 pipe after static and dynamic for 1 d (a, b), 7d (c, d), 30 d (e, f) and 60 d (g, h)
Fig.2  XPS survey spectra of B10 pipe at static and dynamic condition for 60 d
Fig.3  Element percentage of B10 pipe at static and dynamic condition for 60 d
Fig.4  XPS survey spectra of B10 pipe at static (a, c, e) and dynamic (b, d, f) condition static: (a, b) Cu2p; (c, d) Ni2p; (e, f) Fe2p
Fig.5  Electrochemical impedance spectroscopy of B10 pipe at static condition: (a) Nyquist figure, (b) Bode figure
Fig.6  Electrochemical impedance spectroscopy of B10 pipe at dynamic condition: (a) Nyquist figure, (b) Bode figure
Fig.7  Equivalent circuit of fitting EIS data of B10 pipe in seawater
ConditionTime / dRs / Ω·cm2CPE1 / μF·cm-2n1Rf / Ω·cm²CPE2 / μF·cm-2n2Rct / Ω·cm2
Table 1  Fitting data of EIS of B10 pipe in static and dynamic seawater
Fig.8  Effect of time on Rct (a) and Rf (b) of B10 pipe in seawater
Fig.9  Open circuit potential (a) and electrochemical impedance spectroscopy (b) of B10 pipe after 7 d of immersion and erosion corrosion in seawater then erosion corrosion 1 d
Fig.10  Effect of time on open circuit potential of B10 pipe
Fig.11  Effect of time on corrosion rate of B10 pipe
Fig.12  Corrosion process schematic of B10 pipe under static (a) and dynamic (b) condition
1 Lan Z X. Key technologies and program development of ship cooling water piping system design [D]. Dalian: Dalian University of Technology, 2018
兰志新. 船舶冷却水系统设计关键技术及程序开发 [D]. 大连: 大连理工大学, 2018
2 Schleich W. Typical failures of CuNi 90/10 seawater tubing systems and how to avoid them [R]. ETDE-FR-20671762, 2004
3 Liberto R C N, Magnabosco R, Alonso-Falleiros N. Selective corrosion in sodium chloride aqueous solution of cupronickel alloys with aluminum and iron additions [J]. Corrosion, 2007, 63: 211
doi: 10.5006/1.3278345
4 Zhou H, Wang S L, Liu X F, et al. Hybrid corrosion inhibitor for anti-corrosion and protection of bronze relics [J]. J. Chin. Soc. Corros. Port., 2021, 41: 517
周浩, 王胜利, 刘雪峰 等. 新型复合缓蚀剂对青铜文物的防腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 517
5 Hu Z W, Liu J G, Xing R, et al. Erosion-corrosion behavior of 90° horizontal elbow in single phase flow [J]. J. Chin. Soc. Corros. Port., 2020, 40: 115
胡宗武, 刘建国, 邢蕊 等. 单相流条件下90°水平弯管冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 115
6 Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Port., 2021, 41: 508
任莹, 赵会军, 周昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508
7 Peng W S, Duan T G, Hou J, et al. Corrosion Behavior of B10 copper-nickel alloy after full immersion in indoor simulated seawater and real seawater [J]. Equip. Environ. Eng., 2020, 17(8): 63
彭文山, 段体岗, 侯健 等. 室内与实海环境中B10铜镍合金海水全浸腐蚀研究 [J]. 装备环境工程, 2020, 17(8): 63
8 Du J, Wang H R, Du M, et al. Electrochemical corrosion behavior of 90/10 Cu-Ni alloy in flowing seawater [J]. Corros. Sci. Prot. Technol., 2008, 20: 12
杜娟, 王洪仁, 杜敏 等. B10铜镍合金流动海水冲刷腐蚀电化学行为 [J]. 腐蚀科学与防护技术, 2008, 20: 12
9 Li X M, Guo X H, Zhang Y M, et al. Effects of erosion time on the electrochemical performance of B10 pipe in artificial seawater [J]. Mater. Res. Appl., 2016, 10: 53
李晓孟, 国秀花, 张彦敏 等. 人工海水冲刷时间对B10管电化学性能影响的研究 [J]. 材料研究与应用, 2016, 10: 53
10 Li X M, Zhang Y M, Guo X H, et al. Erosion corrosion behavior of copper-nickel alloy pipe in flowing seawater [J]. J. Henan Univ. Sci. Technol. (Nat. Sci.), 2017, 38(3): 10
李晓孟, 张彦敏, 国秀花 等. 流动海水中铜镍合金管材的冲刷腐蚀行为 [J]. 河南科技大学学报 (自然科学版), 2017, 38(3): 10
11 Liu F, Xing L K, Zhang Y, et al. Electrochemical pipeline erosion corrosion testing device [P]. Chin Pat, 201811277952.2, 2019
刘峰, 邢路阔, 张宇 等. 一种管路冲刷腐蚀及电化学测试装置 [P]. 中国专利, 201811277952.2, 2019)
12 Liu F, Xin Y L, Li X B, et al. Preparation method of metal oxide coating anode [P]. Chin Pat, 201510284290.1, 2015
刘峰, 辛永磊, 李相波 等. 一种金属氧化物涂层阳极的制备方法 [P]. 中国专利, 201510284290.1, 2015)
13 Zhu Z P, Yin Z H, Liu S, et al. Corrosion behavior and prediction model for copper exposed in a simulated high H2S containing environment [J]. J. Chin. Soc. Corros. Port., 2015, 35: 333
朱志平, 银朝晖, 柳森 等. 紫铜T2在高浓度H2S模拟环境中的腐蚀行为及预测模型 [J]. 中国腐蚀与防护学报, 2015, 35: 333
14 Moudler J F, Stickle W F, Sobol P E, et al. Handbook of X-Ray Photoelectron Spectroscopy [M]. Perkin-Elmer Corp: Physical Electronics Division Pub, 1995
15 Colin S, Beche E, Berjoan R, et al. An XPS and AES study of the free corrosion of Cu-, Ni- and Zn-based alloys in synthetic sweat [J]. Corros. Sci., 1999, 41: 1051
doi: 10.1016/S0010-938X(98)00141-3
16 Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
17 Efird K D. Potential-pH diagrams for 90-10 and 70-30 Cu-Ni in sea water [J]. Corrosion, 1975, 31: 77
doi: 10.5006/0010-9312-31.3.77
18 Zhang R W. Effect of iron and manganese on corrosion resistance of B10 copper-nickel alloy and its mechanism [D]. Ganzhou: Jiangxi University of Science and Technology, 2019
张荣伟. 铁、猛对B10白铜合金耐蚀性能的影响及机理研究 [D]. 赣州: 江西理工大学, 2019
19 Campbell S A, Radford G J W, Tuck C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
doi: 10.5006/1.3277305
20 van der Weijde D H, van Westing E P M, de Wit J H W. Electrochemical techniques for delamination studies [J]. Corros. Sci., 1994, 36: 643
doi: 10.1016/0010-938X(94)90070-1
21 Campestrini P, van Westing E P M, de Wit J H W. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part I: nucleation and growth [J]. Electrochim. Acta, 2001, 46: 2553
doi: 10.1016/S0013-4686(01)00475-3
22 Du X Q. Study on galvanic corrosion behaviour between typical marine materials in seawater [D]. Hangzhou: Zhejiang University, 2013
杜小青. 典型船用材料在海水中的电偶腐蚀行为研究 [D]. 杭州: 浙江大学, 2013
23 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Port., 2021, 41: 609
王家明, 杨昊东, 杜敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
24 Kear G, Barker B D, Stokes K, et al. Electrochemical corrosion behaviour of 90-10 Cu-Ni alloy in chloride-based electrolytes [J]. J. Appl. Electrochem., 2004, 34: 659
doi: 10.1023/B:JACH.0000031164.32520.58
[1] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[2] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[3] WANG Jiaming, YANG Haodong, DU Min, PENG Wenshan, CHEN Hanlin, GUO Weimin, LIN Cunguo. Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[4] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[5] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[6] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[7] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[8] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[9] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[10] LI Qiang, TANG Xiao, LI Yan. Progress in Research Methods for Erosion-corrosion[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[11] ZHU Juan, ZHANG Qiaobin, CHEN Yu, ZHANG Zhao, ZHANG Jianqing, CAO Chunan. Progress of Study on Erosion-corrosion[J]. 中国腐蚀与防护学报, 2014, 34(3): 199-210.
[13] LI Shoubiao, XU Likun, SHEN Chengjin, LI Xiangbo. PERFORMANCE OF EROSION-RESISTANT CERAMIC COATINGS DEPOSITED BY PLASMA SPRAYING[J]. 中国腐蚀与防护学报, 2011, 31(3): 196-201.
[14] JIN Weixian LUO Yanan SONG Shizhe. MARINE EROSION-CORROSION DETECTIONS OF METAL MATERIALS[J]. 中国腐蚀与防护学报, 2008, 28(6期): 337-340.
[15] . Erosion-Corrosion Characteristic of High Velocity Arc Sprayed FeCrAl Coating and 3Cr13 Coating[J]. 中国腐蚀与防护学报, 2008, 28(4): 225-230 .
No Suggested Reading articles found!