Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 87-94    DOI: 10.11902/1005.4537.2022.035
Current Issue | Archive | Adv Search |
Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment
LI Han1, LIU Yuanhai2, ZHAO Lianhong2, CUI Zhongyu1()
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.China Special Vehicle Research Institute, Jingmen 448004, China
Download:  HTML  PDF(14467KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion performance of the 300M steel was assessed via artificial seawater immersion testing and neutral salt spray testing, aiming to simulate the operation environments, by means of electrochemical methods (i.e. OCP, EIS, PDP) and modern instruments (i.e. SEM+EDS, XRD, CLSM etc.). The results show that 300M ultra high strength steel is sensitive to the change of pH for artificial seawater. With the decrease of pH, the cathodic curve changes from oxygen reduction to hydrogen evolution process control, and the open circuit potential (OCP) moves positively, the charge transfer resistance decreases, and the corrosion current density increases. The fitting results of polarization curve and Nyquist diagram indicate that the decrease of pH leads to the acceleration of corrosion. The corrosion rate calculated by mass loss method shows that the corrosion in salt spray testing is more serious than that in artificial seawater immersion testing. However, in the above two cases the steel all presents characteristics of uniform corrosion. This was further proved by observation results of surface morphology and cross-sectional morphology of the tested steel. The corrosion products thickened with local spallation as the progress of corrosion process. The corrosion products was composed of α-FeOOH, γ-FeOOH, α-Fe2O3 and Fe3O4, the more the α-FeOOH. The difference in corrosion behavior of the 300M steel by immersion testing and salt spray testing is determined by the corrosion electrochemical reaction process and the deposition process of corrosion products. During the salt spray testing, the steel surface covered by thin electrolyte film with adequate oxygen supply, which promotes the deposition of corrosion products, thus promoting the adsorption of Cl-, and ultimately accelerating the corrosion.

Key words:  300M ultra high strength steel      artificial seawater      corrosion products      electrochemical behavior      steel corrosion     
Received:  12 February 2022      32134.14.1005.4537.2022.035
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51601182)

Cite this article: 

LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 87-94.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.035     OR     https://www.jcscp.org/EN/Y2023/V43/I1/87

Fig.1  Microstructure of 300M ultra high strength steel
Fig.2  Open circuit potential plot (a), potentiodynamic polarization curves (b), Nyquist plots (c) and Equiva-lent circuit for EIS test (d, e) of 300M ultra high strength steel
pHRs / Ω·cm2CPEdl / Ω-1·cm-2·s-nnRct / Ω·cm2L / H·cm2
3.04.335.35×10-40.8548.42.60×10-3
4.56.361.35×10-30.65217.9---
6.06.031.74×10-30.65670.9---
8.26.951.33×10-30.61730.8---
Table 1  Fitted electrochemical parameters for EIS of 300M ultra high strength steel
Fig.3  Macromorphologies of 300M ultra high strength steel after immersed (a1-a4) and salt spray (b1-b4) corrosion for 3 d (a1, b1), 7 d (a2, b2), 14 d (a3, b3) and 28 d (a4, b4)
Fig.4  XRD spectra of 300M ultra high strength steel after immersed (a) and salt spray (b) corrosion different period
Fig.5  Micro-morphologies of 300M ultra high strength steel steels after immersed (a1-a4) and salt spray (b1-b4) corrosion for 14 d (a1, a2, b1, b2) and 28 d (a3, a4, b3, b4)
Fig.6  Cross section morphology and corresponding elemental mapping of 300M ultra high strength steel after corrosion for 28d in ASW (a) and NSS (b)
Fig.7  Micro-morphologies of 300M ultra high strength steel after immersed (a1-a4) and salt spray (b1-b4) corrosion for 14 d (a1, a2, b1, b2) and 28 d (a3, a4, b3, b4) after removal of corrosion products
Fig.8  3D morphologies of 300M ultra high strength steel after immersed (a, b) and salt spray (c, d) corrosion for 14 d (a, c) and 28 d (b, d)
1 Liu M T, Liu J H, Zhong P. Research development of corrosion resistance of ultra-high strength steel [J]. Sci. Technol. Rev., 2010, 28(9): 112
柳木桐, 刘建华, 钟平. 超高强度钢耐腐蚀性能研究进展 [J]. 科技导报, 2010, 28(9): 112
2 Ran X Z, Liu D, Li A, et al. Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel [J]. Mater. Sci. Eng., 2016, 663A: 69
3 Malakondaiah G, Srinivas M, Rao P R. Ultrahigh-strength low-alloy steels with enhanced fracture toughness [J]. Prog. Mater. Sci., 1997, 42: 209
doi: 10.1016/S0079-6425(97)00016-9
4 Liu J H, Wen C, Yu M, et al. Manifestations in corrosion prophase of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solutions [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2014, 29: 367
5 Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment [J]. J. Mater. Eng., 2012, (1): 42
于美, 董宇, 王瑞阳 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为 [J]. 材料工程, 2012, (1): 42
6 Yu M, Qi J Y, Liu J H, et al. Corrosion behaviors of ultra-high strength steel 40CrNi2Si2MoVA in submerged zone of simulated seawater [J]. Corros. Prot., 2011, 32: 779
于美, 祁晋豫, 刘建华 等. 40CrNi2Si2MOVA超高强钢在模拟海水全浸区的腐蚀行为 [J]. 腐蚀与防护, 2011, 32: 779
7 Qiang G, Liu J H, Mei Y, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 139
doi: 10.1007/s40195-014-0174-8
8 Montoya P, Díaz I, Granizo N, et al. An study on accelerated corrosion testing of weathering steel [J]. Mater. Chem. Phys., 2013, 142: 220
doi: 10.1016/j.matchemphys.2013.07.009
9 Sun M, Xiao K, Dong C F, et al. Electrochemical corrosion behavior of 300M ultra high strength steel in chloride containing environment [J]. Acta Metall. Sin. (Engl. Lett.), 2010, 23: 301
10 Li T, Liu Y, Zheng C Q. Effect of rare earth elements on marine atmospheric corrosion behavior of ultrahigh-strength steel [J]. Surf. Technol., 2016, 45(3): 38
李涛, 刘毅, 郑传奇. 稀土对超高强度钢耐海洋大气腐蚀性能的影响 [J]. 表面技术, 2016, 45(3): 38
11 Zhong J Y, Sun M, Liu D B, et al. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels [J]. Int. J. Miner., Metall., Mater., 2010, 17: 282
12 Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
doi: 10.1016/j.corsci.2018.08.048
13 Tian H Y, Xin J C, Li Y, et al. Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater [J]. Corros. Sci., 2019, 158: 108089
doi: 10.1016/j.corsci.2019.07.013
14 Wang Z F, Yin F X, Wu L X, et al. Corrosion resistance on high strength bainitic steel and 09CuPCrNi after wet-dry cyclic conditions [J]. J. Iron Steel Res. Int., 2013, 20: 72
15 Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
16 Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
doi: 10.1016/j.corsci.2017.01.016
17 Shen S Y, Wang D S, Sun S B, et al. Corrosion behavior in artificial seawater of subzero treated EH40 marine steel suitable for extremely cold environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 151
沈树阳, 王东胜, 孙士斌 等. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响 [J]. 中国腐蚀与防护学报, 2020, 40: 151
18 de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
19 de la Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
doi: 10.1016/j.corsci.2016.04.034
20 Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
doi: 10.1016/j.conbuildmat.2021.125211
21 Dong B J, Liu W, Zhang T Y, et al. Corrosion failure analysis of low alloy steel and carbon steel rebar in tropical marine atmospheric environment: outdoor exposure and indoor test [J]. Eng. Failure Anal., 2021, 129: 105720
doi: 10.1016/j.engfailanal.2021.105720
22 Diaz I, Cano H, de la Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
doi: 10.1016/j.corsci.2013.06.053
23 Su H Y, Liang Y, Wei S C, et al. Couple effect of hydrostatic pressure and dissolved oxygen on corrosion behaviour of low-alloy high strength steel in 3.5 wt-% NaCl solution [J]. Corros. Eng. Sci. Technol., 2019, 54: 330
doi: 10.1080/1478422X.2019.1590959
24 Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
25 Liu Z G, Gao X H, Li J P, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
doi: 10.1016/j.electacta.2016.08.024
26 Yuan R, Wu H B, Gu Y. Effect of alloyed Cr on corrosion behavior of low-alloy steel in wet atmosphere [J]. Mater. Corros. Werkst. Korros., 2022, 73: 918
27 Qian A, Jin P, Tan X M, et al. Corrosion and electrochemical properties of AerMet100 steel in salt fog [J]. Surf. Technol., 2018, 47 (10): 231
钱昂, 金平, 谭晓明 等. AerMet100钢在盐雾中的腐蚀与电化学特性 [J]. 表面技术, 2018, 47(10): 231
28 Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
doi: 10.1016/S0010-938X(72)90671-3
[1] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[2] ZHANG Jiahuan, CUI Zhongyu, FAN Lin, SUN Mingxian. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[3] WANG Tengyu, ZHANG Zhenggui, LU Weizhong, WU Xige. Effect of Alternating Pressure on Electrochemical Behavior of Solvent-free Epoxy Coating in Simulated Ultra-deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[4] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[5] CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[6] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[7] LIU Dong, LIU Jing, HUANG Feng, DU Liying, PENG Wenjie. Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[8] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[9] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[10] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[11] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[12] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[13] Hongtao ZHAO,Weizhong LU,Jing LI,Yugui ZHENG. Electrochemical Behavior of Solvent-free Epoxy Coating during Erosion in Simulated Flowing Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(4): 295-305.
[14] Xiangnan MENG,Xu CHEN,Ming WU,Yang ZHAO,Yuwen FAN. Effect of Hydrostatic Pressure on Electrochemical Behavior of X100 Steel in NaHCO3+NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[15] YUAN Wei,HUANG Feng,HU Qian,LIU Jing,HOU Zhenyu. Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
No Suggested Reading articles found!