Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 1038-1046    DOI: 10.11902/1005.4537.2023.292
Current Issue | Archive | Adv Search |
Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes
PENG Wenshan1, XING Shaohua1(), QIAN Yao1,2, LIN Cunguo1, HOU Jian1, ZHANG Dalei3
1. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2. Qingdao Jimo District Bureau of industry and information technology, Qingdao 266205, China
3. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Cite this article: 

PENG Wenshan, XING Shaohua, QIAN Yao, LIN Cunguo, HOU Jian, ZHANG Dalei. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1038-1046.

Download:  HTML  PDF(7712KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TA2 pure-Ti is a new generation of marine pipeline material, and the flowing seawater induced failure of its passivation film can deteriorate the durability of TA2 pure-Ti pipes. Hence the effect of flowing seawater on the corrosion behavior of TA2 pure-Ti being subjected to different surface treatments is of great significance for evaluating the service performance of TA2 pure-Ti pipes. Herein, the corrosion behavior of two surface treated TA2 pure-Ti rings in flowing seawater was comparatively studied in a home-made seawater pipeline integrated simulation set by means of measurements such as dynamic potential polarization, electrochemical impedance, and Mott Schottky analysis, as well as characterization of corrosion morphology and corrosion products. The results showed when the seawater flow rate below 5 m/s, the change in seawater flow rate had a relatively small impact on the corrosion resistance of the passive film on the surface of TA2 pure-Ti. When the potential rises, the passive film on the surface of TA2 showed a transient dissolution in flowing seawater, but it would soon be re-passivated, which did not have a significant impact on the corrosion resistance of the substrate material. Compared to the surface passivation treated ones, the polished TA2 exhibit limited diffusion characteristics of cathodic polarization in flowing seawater. This is mainly due to the presence of a passivation film on the surface of the passivated TA2, which consumes less oxygen than the surface polished ones that have not yet formed a passivation film. The depolarization of the polished TA2, which was controlled by oxygen mass transfer rate develops slowly, resulting in a limit current density that does not vary with the potential. The passivation films on the TA2, after being subjected to two surface treatments only exhibit n-type semiconductor characteristics in seawater, and after polarization testing, the material surface is flat without significant local corrosion.

Key words:  TA2 pure-Ti      seawater pipeline      erosion-corrosion      electrochemistry      passivation film     
Received:  14 September 2023      32134.14.1005.4537.2023.292
ZTFLH:  TG172  
Corresponding Authors:  XING Shaohua, E-mail: xingsh@sunrui.net

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.292     OR     https://www.jcscp.org/EN/Y2024/V44/I4/1038

Fig.1  Electrolytic cell for electrochemical testing
Fig.2  Potentiodynamic polarization curves of TA2 pure-Ti at different flow rates: (a) polishing, (b) passivation
Fig.3  Nyquist (a), impedance module (b) and phase angle (c) plots of polished TA2 at different flow rates
Fig.4  Fitting circuit diagram of the sample after seawater erosion
V / m·s-1nRf / Ω·cm2
00.941.39 × 107
10.941.19 × 107
20.931.17 × 107
30.941.20 × 107
40.941.21 × 107
50.941.19 × 107
Table 1  Fitting data of EIS of surface polished TA2 under different flowing seawater
Fig.5  Nyquist (a), impedance module (b) and phase angle (c) plots of surface passivated TA2 at different flow rates
V / m·s-1nRf / Ω·cm2
00.961.81 × 107
10.951.61 × 107
20.971.84 × 107
30.981.74 × 107
40.971.93 × 107
50.971.78 × 107
Table 2  Fitting data of electrochemical impedance spectroscopy of surface passivated TA2 under different flowing seawater
Fig.6  Mott-Schottky curves of TA2 at different flow rates: (a) polishing, (b) passivation
Fig.7  Donor density (a, c) and flat band potential (b, d) of TA2 samples at different flow rates: (a, b) polishing, (c, d) passivation
Fig.8  Three-dimensional morphologies of polished TA2 at different flow rates: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
Fig.9  Three-dimensional morphologies of passivation TA2 at different flow rates: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
Fig.10  Morphologies of polished TA2 at different flow rates: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
Fig.11  Morphologies of passivated TA2 at different flow rates: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
[1] Song D J, Niu L, Yang S L. Research on application technology of titanium alloy in marine pipeline [J]. Rare Metal Mater. Eng., 2020, 49: 1100
宋德军, 牛 龙, 杨胜利. 船舶海水管路钛合金应用技术研究 [J]. 稀有金属材料与工程, 2020, 49: 1100
[2] Wu X W, Nie L X, Wu H. Erosion corrosion behavior of several typical pipeline materials in flowing seawater [J]. Mater. Prot., 2021, 54(5): 7, 23
武兴伟, 聂垒鑫, 吴 恒. 几种典型管路材料在流动海水中的冲刷腐蚀行为 [J]. 材料保护, 2021, 54(5): 7, 23
[3] Wei B M. Theory and Application of Metal Corrosion [M]. Beijing: Chemical Industry Press, 2008
魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 2008
[4] Xia L T, Huang G Q, Zhang S P, et al. Marine Corrosion and Protection of Metal Materials [M]. Beijing: Metallurgical Industry Press, 2003
夏兰廷, 黄桂桥, 张三平 等. 金属材料的海洋腐蚀与防护 [M]. 北京: 冶金工业出版社, 2003
[5] Zhou Y F, Wang H R. Review of research on the environmental corrosion of ship seawater systems [J]. Dev. Appl. Mater., 2008, 23(3): 16, 23
周永峰, 王洪仁. 船舶海水管系的环境腐蚀研究进展 [J]. 材料开发与应用, 2008, 23(3): 16, 23
[6] Zhang M L. Corrosion cause and anti-corrosion measure of marine sea water piping in warship [J]. Total Corros. Control, 2010, 24(6): 5
张敏丽. 船舶海水管系腐蚀的原因及其防护 [J]. 全面腐蚀控制, 2010, 24(6): 5
[7] Wang G F, Jia Z Q, Dong C C, et al. Properties of typical materials for marine seawater pipeline system [J]. Corros. Prot., 2022, 43(4): 24
王广夫, 贾智棋, 董彩常 等. 舰船海水管路体系典型材料的性能 [J]. 腐蚀与防护, 2022, 43(4): 24
[8] Zeng R H, Peng Y H, Zhang W. Protection measures against erosion of seawater pipeline of ships [J]. Chin. J. Ship Res., 2009, 4(3): 74, 80
曾荣辉, 彭玉辉, 张 威. 船舶海水管路防腐蚀研究 [J]. 中国舰船研究, 2009, 4(3): 74, 80
[9] Zhang Y F, Li J Z, Zhang W H. Eletrochemical behavior and corrosion properties of Ti-6Al-4V Alloy made by selective laser melting for immersion in artificial seawater at different temperature [A]. Characterization of Minerals, Metals, and Materials 2018 [C]. Cham: Springer, 2018
[10] Zhang Y X, Yan T T, Fan L, et al. Effect of pH on the corrosion and repassivation behavior of TA2 in simulated seawater [J]. Materials (Basel), 2021, 14: 6764
[11] Qian J, Wang Y, Li Y. The application of titanium and titanium alloys on foreign vessls [J]. Ship Sci. Technol., 2016, 38(6): 1, 19
钱 江, 王 怡, 李 瑶. 钛及钛合金在国外舰船上的应用 [J]. 舰船科学技术, 2016, 38(6): 1, 19
[12] Qu H L, Zhou Y G, Zhou L, et al. Recent progress of study on new titanium alloys [J]. Mater. Rep., 2005, 19(2): 94
曲恒磊, 周义刚, 周 廉 等. 近几年新型钛合金的研究进展 [J]. 材料导报, 2005, 19(2): 94
[13] Zhao Y Q, Wei J F, Gao Z J, et al. Titanium alloys: Current status of application and low cost manufacturing technologies [J]. Mater. Rep., 2003, 17(4): 5
赵永庆, 魏建峰, 高占军 等. 钛合金的应用和低成本制造技术 [J]. 材料导报, 2003, 17(4): 5
[14] Huang X X, Li R Q, Zhang Y X. Corrosion control and prevention technique for fasteners made of titanium alloys [J]. Mater. Prot., 2008, 41(6): 56
黄晓霞, 李荣强, 张艳霞. 钛合金紧固件的腐蚀及其防护技术 [J]. 材料保护, 2008, 41(6): 56
[15] Qian J, Zhao M, Jiang Y. Applicaion influence and key technology problems of titanium seawater pipelines used on navy ships [J]. Ship Sci. Technol., 2019, 41(5): 55
钱 江, 赵 满, 姜 祎. 钛合金海水管路上舰应用影响与关键技术问题 [J]. 舰船科学技术, 2019, 41(5): 55
[16] Zhao Y Y. Low cost technology and application of titanium for marine seawater pipeline in the USA [J]. Dev. Appl. Mater., 2022, 37(3): 93
赵彦营. 美国船舶海水管路用钛的低成本技术及应用概况 [J]. 材料开发与应用, 2022, 37(3): 93
[17] Hai M N, Huang F, Wang Y M. Brief analysis of the application of titanium and titanium alloy in marine equipment [J]. Metal World, 2021, (5): 16
海敏娜, 黄 帆, 王永梅. 浅析钛及钛合金在海洋装备上的应用 [J]. 金属世界, 2021, (5): 16
[18] Wu J X. Application of titanium alloy materials in ship materials [J]. Marine Equip./Mater. Market., 2020, (8): 5
吴建新. 钛合金材料在船舶材料上的应用 [J]. 船舶物资与市场, 2020, (8): 5
[19] Yang W G, Dong C C, Qi Y F, et al. Corrosion characteristics of titanium alloy seawater pipeline system materials [J]. Equip. Environ. Eng., 2019, 16(11): 36
杨万国, 董彩常, 亓云飞 等. 钛合金海水管路系统材料腐蚀特性研究 [J]. 装备环境工程, 2019, 16(11): 36
[20] Yan S K, Zheng D J, Wei J, et al. Electrochemical activation of passivated pure titanium in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 123
严少坤, 郑大江, 韦 江 等. 钝性纯Ti在人工海水中的电化学活化行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 123
doi: 10.11902/1005.4537.2018.050
[21] Luo X B, Qian J, Su H, et al. Effect of flow velocity on corrosion behavior of typical metal materials for pipes in seawater [J]. Corros. Prot., 2015, 36: 555
罗小兵, 钱 江, 苏 航 等. 海水流速对典型金属管材腐蚀行为的影响 [J]. 腐蚀与防护, 2015, 36: 555
[22] Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy [J]. Chin. J. Lasers, 2020, 47: 0102003
廖聪豪, 周 静, 沈 洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能 [J]. 中国激光, 2020, 47: 0102003
[23] Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2016, 102: 484
[24] Morrison S R, translated by Wu H H. Electrochemistry at Semiconductor and Oxidized Metal Electrodes [M]. Beijing: Science Press, 1988
Morrison S R著, 吴辉煌, 译. 半导体与金属氧化膜的电化学 [M]. 北京: 科学出版社, 1988
[1] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[2] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[3] DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting, LI Jin, JIANG Yiming. Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[4] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[5] LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[6] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[7] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[8] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[9] ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[10] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[11] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[12] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[13] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[14] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[15] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
No Suggested Reading articles found!