Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 389-395    DOI: 10.11902/1005.4537.2023.119
Current Issue | Archive | Adv Search |
Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance
WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 389-395.

Download:  HTML  PDF(4122KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

At present, TiO2, as a low-cost and non-polluting N-type semiconductor material, has been applied to photogenerated cathodic protection technology due to its excellent photoelectric conversion performance. In comparison with the ordinary nanotube arrays, the highly ordered lotus root-like TiO2 nanotube arrays (TNTAs) present much larger specific surface area and more effective photoreaction sites, which is conductive to enhancing the photoelectrochemical properties of TiO2 nanotube arrays. In this paper, lotus root-like TiO2 nanotube arrays were prepared by a two-step anodization process in NH4F-(NH4)2SO4 composite electrolyte. The effect of different anodization voltages on the performance of TiO2 nanotube photoanodes was studied. The structure, morphology and separation rate of photogenerated carriers of TNTAs prepared by different appllied anodic oxidation voltages were studied by XRD, SEM and photoluminescence spectra (PL). At the same time, under the irradiation of a simulated sunlight, the photoelectrochemical performance was evaluated by the photocurrent density measurement, and the cathodic protection effect of the photoanode on 304 stainless steel was evaluated by measurements of open circuit potential and Tafel polarization potential, as well as by fitting EIS curves. The results show that when the anodic oxidation voltage is 25 V, TNTAs have clear lotus root-like shape, high regularity, high photogenerated carrier separation rate and high photogenerated current density. Accordingly, the prepared TNTAs present lower open circuit potential, while better cathodic protection effect for 304 stainless steel substrates.

Key words:  TiO2 nanotubes      anodic oxidation      photoelectrochemistry      photocathode protection     
Received:  18 April 2023      32134.14.1005.4537.2023.119
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China-Shandong Provincial Joint Fund(U1706221)
Corresponding Authors:  GAO Rongjie, E-mail: dmh206@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.119     OR     https://www.jcscp.org/EN/Y2024/V44/I2/389

Fig.1  Schematic diagrams of photogenerated cathodic protection performance test devices: (a) single battery system, (b) dual battery system
Fig.2  XRD patterns of XV-TNTAs
Fig.3  XPS survey spectrum (a) and fine spectra of Ti 2p (b) and O 1s (c) for XV-TNTAs
Fig.4  Transversal (a-d) and vertical section (e-h) section images of 15V-TNTAs (a, e), 20V-TNTAs (b, f), 25V-TNTAs (c, g) and 30V-TNTAs (d, h)
Fig.5  Photoluminescence spectra of XV-TNTAs
Fig.6  Photocurrent-time curves of XV-TNTAs under intermittent visible light
Fig.7  Open circuit potential-time curves of XV-TNTAs
Fig.8  Tafel polarization curves of XV-TNTAs coupled with 304 stainless steel
Fig.9  Nyquist plots of XV-TNTAs (a) and electrochem-ical impedance equivalent circuit model(b)
Sample

Rs

Ω·cm2

Rct

Ω·cm2

CPE-T

× 10-3 S·s n ·cm-2

n
304 stainless steel29.873668.001.6850.901
15V-TNTAs28.673059.001.0780.885
20V-TNTAs26.872207.001.1800.924
25V-TNTAs30.141329.000.9360.837
30V-TNTAs30.152019.001.0980.896
Table 1  Fitting parameters of electrochemical impedance spectroscopies of XV-TNTAs
1 Bu Y Y, Ao J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy Environ., 2017, 2: 331
doi: 10.1016/j.gee.2017.02.003
2 Williams D E, Newman R C, Song Q, et al. Passivity breakdown and pitting corrosion of binary alloys[J]. Nature, 1991, 350: 216
doi: 10.1038/350216a0
3 Jiang J H, Zhang X Y, Jin Z Q. Research progress in photochemical cathodic protection technology[J]. Mar. Sci., 2021, 45: 150
蒋继宏, 张小影, 金祖权. 光电化学阴极保护技术研究进展[J]. 海洋科学, 2021, 45: 150
4 Christodoulou C, Glass G, Webb J, et al. Assessing the long term benefits of impressed current cathodic protection[J]. Corros. Sci., 2010, 52: 2671
doi: 10.1016/j.corsci.2010.04.018
5 Wijnhoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in Titania[J]. Science, 1998, 281: 802
pmid: 9694646
6 Chen F W, Liu B, Jian D H, et al. Research progress and existing problems of photocathodic protection technology[J]. J. Mater. Eng., 2021, 49: 83
陈凡伟, 刘 斌, 蹇冬辉 等. 光生阴极保护技术的研究进展及其存在的问题[J]. 材料工程, 2021, 49: 83
doi: 10.11868/j.issn.1001-4381.2021.000469
7 Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95: 735
doi: 10.1021/cr00035a013
8 Yu H G, Irie H, Hashimoto K. Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst[J]. J. Am. Chem. Soc., 2010, 132: 6898
doi: 10.1021/ja101714s pmid: 20429504
9 Chen X B, Mao S S. Titanium dioxide nanomaterials:  synthesis, properties, modifications, and applications[J]. Chem. Rev., 2007, 107: 2891
doi: 10.1021/cr0500535
10 Sun L D, Zhang S, Sun X W, et al. Effect of the geometry of the anodized Titania nanotube array on the performance of dye-sensitized solar cells[J]. J. Nanosci. Nanotechnol., 2010, 10: 4551
pmid: 21128456
11 Choi J Y, Hoon Sung Y, Choi H J, et al. Fabrication of Au nanoparticle-decorated TiO2 nanotube arrays for stable photoelectrochemical water splitting by two-step anodization[J]. Ceram. Int., 2017, 43: 14063
doi: 10.1016/j.ceramint.2017.07.141
12 Mohan L, Dennis C, Padmapriya N, et al. Effect of electrolyte temperature and anodization time on formation of TiO2 nanotubes for biomedical applications[J]. Mater. Today Commun., 2020, 239: 101103
13 Bao C Y, Li J M, Ye M Y, et al. Preparation of TiO2 nanotube arrays in composite electrolytes and their photogenerated cathodic protection performance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 759
鲍晨宇, 李建民, 叶梦颖 等. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42: 759
doi: 10.11902/1005.4537.2021.255
14 Farsak M, Keleş H, Keleş M. A new corrosion inhibitor for protection of low carbon steel in HCl solution[J]. Corros. Sci., 2015, 98: 223
doi: 10.1016/j.corsci.2015.05.036
15 Cong Y, Zhang J L, Chen F, et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity[J]. J. Phys. Chem., 2007, 111C: 6976
16 Guo H X, Li L L, Su C, et al. Effective photocathodic protection for 304 stainless steel by PbS quantum dots modified TiO2 nanotubes[J]. Mater. Chem. Phys., 2021, 258: 123914
doi: 10.1016/j.matchemphys.2020.123914
[1] BAO Chenyu, LI Jianmin, YE Mengying, GAO Rongjie. Preparation of TiO2 Nanotube Arrays in Composite Electrolytes and Their Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[2] YU Shuaixian, WU Yajun, WU Haisheng, WU Liang, MA Yanlong, DENG Shengwei, SUN Lidong. Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[3] SU Na, YE Mengying, LI Jianmin, GAO Rongjie. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[4] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[5] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[6] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[7] TAN Yu,LIANG Kexin,ZHANG Shenghan. Photo-electrochemical Study on Semiconductor Properties of Oxide Films Formed on 316L Stainless Steel in High Temperature Water[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
[8] SHI Jianmin,ZHANG Ling,CHEN Jing,SHEN Chunlei,LEI Jiarong,ZHOU Xiaosong. Corrosion Behavior of Al-B4C Composite in Spent Nuclear Fuel Storage Environments[J]. 中国腐蚀与防护学报, 2013, 33(5): 419-424.
[9] ZHANG Qinjie,YAO Wenhong,HE Benlin,GE Honglun,SUN Miao,
LIU Wei,QU Jun,WANG Wei. Corrosion Behavior of TiO2 Film Prepared by Anodic Oxidation Method in Simulated Deep Sea Hydrothermal Region[J]. 中国腐蚀与防护学报, 2013, 33(1): 23-28.
[10] ;. PRINCIPLES OF PHOTOELECTROCHEMICAL APPROACH FOR METAL ANTICORROSION AND CURRENT STATUS[J]. 中国腐蚀与防护学报, 2006, 26(3): 188-192 .
[11] Hebing Zhou; Weishan Li. ANODIC PASSIVATION PROCESSES OF INDIUM IN ALKALINE SOLUTION[J]. 中国腐蚀与防护学报, 2005, 25(1): 25-29 .
[12] Henan Wang; Hongwei Huo; Ying Li. THE NEW TECHNOLOGY OF THE ANODIC OXIDATION APPLIED TO AZ91D ALLOY[J]. 中国腐蚀与防护学报, 2003, 23(5): 286-289 .
[13] ZHOU Guo-ding Kamkin A (Electrochemical Research Group; Shanghai Institute of Electric Power; Shanghai 200090)XU Qun-jie (East China University of Science Technology; Corrosion Prevention Center; Shanghai 200231). A PHOTOELECTROCHEMICAL STUDY OF CUPRO-NICKEL AND COPPER ELECTRODES IN ALKALINE SOLUTIONS[J]. 中国腐蚀与防护学报, 1998, 18(2): 151-154.
[14] Du Tianbao;Yang Maizhi; Chen Shenhao;Chen Li;Cao Chunan1(The Institute of Corrosion and Protection of Metals;Key Laboratory for Corrosion and Protection;Shenyany 110015)2. (Beijing University)3. (Shandong University). A PHOTOCURRENT SPECTRA STUDY OF PASSIVE FILMS ON SENSITIZED STAINLESS STEEL IN ACIDIC SOLUTION[J]. 中国腐蚀与防护学报, 1995, 15(4): 285-290.
[15] Ren Jujie;Yang Maizhi;Tong Ruting;Cai Shengmin(Hebei Medical College)(Beijing University)(Hebei Normal University). PHOTOELECTROCHEMICAL STUDY ON SURFACE FILM OF COPPER FORMED IN 3% NaCl SOLUTION CONTAINING BTA[J]. 中国腐蚀与防护学报, 1995, 15(3): 237-239.
No Suggested Reading articles found!