|
|
Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings |
ZHANG Zhaoyi1,2, ZHOU Xuejie1,2( ), CHEN Hao1,2, WU Jun1,2, CHEN Zhibiao3, CHEN Zhijian1,2 |
1. China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China 2. Wuhan Materials Corrosion National Observation and Research Station, Wuhan 430030, China 3. Wuhan Institute of Specification of China Classification Society, Wuhan 430030, China |
|
Cite this article:
ZHANG Zhaoyi, ZHOU Xuejie, CHEN Hao, WU Jun, CHEN Zhibiao, CHEN Zhijian. Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 735-744.
|
Abstract There is limited studies available on the corrosion of carbon steel in freshwater surroundings. Herewith, plates of two ship steels CCSA and Q235B steel were exposed to different sites such as the atmosphere, waterline, and underwater in freshwater surroundings of the Changjiang River (Yangtze River) for 0.5, 1, 2, 3, 4, and 7 a, then there corrosion behavior was assessed by means of morphology analysis, mass-loss measurement, XRD, and electrochemical techniques. Results show that the two carbon steels suffered from significant corrosion in the freshwater surroundings of the Changjiang River, exhibiting nearly the identical corrosion morphology. Their corrosion processes follow a power function law. After 7 years, the corrosion rates of CCSA were found to be 8, 77 and 40 μm·a-1 in the atmosphere, waterline, and underwater, respectively, while the corrosion rates of Q235B were 9, 80, and 41 μm·a-1 in the same conditions. Among others, the corrosion on the waterline was the highest. The composition of the corrosion product of the two carbon steels was similar, primarily including SiO2, α-FeOOH, γ-FeOOH, Fe2O3 and Fe3O4/γ-Fe2O3. Based on the comprehensive electrochemical analysis results, CCSA demonstrated better corrosion resistance than Q235B. Regarding to the test results in various test sites of freshwater surroundings of the Changjiang River, the corrosion rate of the carbon steels may be ranked in descending order as follows: waterline> underwater > atmospheric.
|
Received: 21 September 2023
32134.14.1005.4537.2023.302
|
|
Corresponding Authors:
ZHOU Xuejie, zhouxj11@163.com
|
1 |
He J X, Qin X Z, Yi P, et al. Corrosion exposure study on Q235 steel in marine atmospheric [J]. Surf. Technol., 2006, 35(4): 21
|
|
何建新, 秦晓洲, 易 平 等. Q235钢海洋大气腐蚀暴露试验研究 [J]. 表面技术, 2006, 35(4): 21
|
2 |
Huang G Q, Yang Z H, Ou J C, et al. Corrosion types and evaluation of metallic materials in water environments in China [J]. Corros. Prot., 2010, 31: 255
|
|
黄桂桥, 杨朝晖, 欧家才 等. 我国金属材料水环境腐蚀类型及其评定 [J]. 腐蚀与防护, 2010, 31: 255
|
3 |
Yan M, Huang G Q. Review and expectation on national network for water environment corrosion test in China [J]. Mar. Sci., 2005, 29(7): 73
|
|
颜 民, 黄桂桥. 中国水环境腐蚀试验站网工作回顾与展望 [J]. 海洋科学, 2005, 29(7): 73
|
4 |
Sun Y, Wu J J, Zhang D, et al. Investigation of microorganisms in corrosion product scales on Q235 carbon steel exposed to tidal- and full immersion zone at Qindao- and Sanya-sea waters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 333
|
|
孙 艳, 吴佳佳, 张 盾 等. 不同海域、不同腐蚀区带Q235碳钢实海挂片腐蚀产物层内微生物调查 [J]. 中国腐蚀与防护学报, 2018, 38: 333
|
5 |
Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
doi: 10.1016/j.jmst.2017.11.004
|
6 |
Luo X B, Qian J, Su H, et al. Effect of flow velocity on corrosion behavior of typical metal materials for pipes in seawater [J]. Corros. Prot., 2015, 36: 555
|
|
罗小兵, 钱 江, 苏 航 等. 海水流速对典型金属管材腐蚀行为的影响 [J]. 腐蚀与防护, 2015, 36: 555
|
7 |
Cao G, Gao C, Gan F X. Corrosion behaviors of carbon steel in fresh water [J]. Equip. Environ. Eng., 2006, 3(1): 46
|
|
曹 刚, 高 翠, 甘复兴. 碳钢在淡水环境中的腐蚀行为 [J]. 装备环境工程, 2006, 3(1): 46
|
8 |
Zulkafli R, Othman N K, Yaakob N. Surface characteristics of carbon steels in the presence of sulfate reducing bacteria consortiums in CO2 gas environment [J]. Sains Malays., 2022, 51: 3113
doi: 10.17576/jsm
|
9 |
Jiang L, Cao G, Mao X H, et al. Effect of microbes on early corrosion behavior of Q235 steel in freshwater [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 177
|
|
江 莉, 曹 刚, 毛旭辉 等. 淡水微生物对Q235钢早期腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 177
|
10 |
Sandu A V, Ciomaga A, Nemtoi G, et al. Corrosion of mild steel by urban river water [J]. Instrum. Sci. Technol., 2015, 43: 545
doi: 10.1080/10739149.2015.1020432
|
11 |
Linhardt P. Microbially influenced corrosion of stainless steel by manganese oxidizing microorganisms [J]. Mater. Corros., 2004, 55: 158
|
12 |
Yang B J, Wei M M, Yao J H, et al. Corrosion behaviors of 45# and Q235 carbon steel in different water circumstances [J]. Equip. Environ. Eng., 2017, 14(6): 102
|
|
杨博均, 魏木孟, 姚敬华 等. 45#钢和Q235在不同水环境中的腐蚀行为研究 [J]. 装备环境工程, 2017, 14(6): 102
|
13 |
Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: Fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
|
|
曹京宜, 方志刚, 李 亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
doi: 10.11902/1005.4537.2021.003
|
14 |
Hao Z K, Chen Z B, Zhang D, et al. Initial corrosion behaviors of ship steel plate in fresh water environment [J]. Equip. Environ. Eng., 2017, 14(9): 73
|
|
郝张科, 陈志飚, 张 东 等. 船用钢板材料在淡水环境中初期腐蚀行为 [J]. 装备环境工程, 2017, 14(9): 73
|
15 |
Huang J C, Meng X B, Huang Y H, et al. Atmospheric corrosion of carbon steels in tropical and subtropical climates in Southern China [J]. Mater. Corros., 2020, 71: 1400
|
16 |
Panchenko Y M, Marshakov A I, Igonin T N, et al. Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function [J]. Corros. Sci., 2014, 88: 306
doi: 10.1016/j.corsci.2014.07.049
|
17 |
Sun Z C, Liang C, Chen Y, et al. Corrosion characteristics and prediction model of aluminum alloys in saturated Na2SO4 solution [J]. Mater. Chem. Phys., 2023, 308: 128273
doi: 10.1016/j.matchemphys.2023.128273
|
18 |
Yao Y, Liu G J, Li S Z, et al. Research progress on corrosion prediction model of metallic materials for electrical equipment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 983
|
|
姚 勇, 刘国军, 黎石竹 等. 金属材料腐蚀预测模型研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 983
|
19 |
Mao C L, Xiao K, Dong C F, et al. Corrosion behavior of extra deep drawing cold rolled sheet in stimulative ocean-atmosphere environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 101
|
|
毛成亮, 肖 葵, 董超芳 等. 超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 101
doi: 10.11902/1005.4537.2016.202
|
20 |
De la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
|
21 |
Wu H Y, Luo Y Z, Zhou G E. Corrosion behaviors and mechanical properties of Q235 steel pipes collapsing due to corrosion after 25-year service in urban industrial atmospheric environment [J]. Constr. Build. Mater., 2023, 395: 132342
doi: 10.1016/j.conbuildmat.2023.132342
|
22 |
Laleh M, Pathirana M, Tan M Y. Site-specific local polarisation curve measurements for probing localised corrosion and inhibition [J]. Corros. Sci., 2023, 214: 111019
doi: 10.1016/j.corsci.2023.111019
|
23 |
Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
doi: 10.11900/0412.1961.2020.00010
|
|
宋学鑫, 黄松鹏, 汪 川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
doi: 10.11900/0412.1961.2020.00010
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|