Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 735-744    DOI: 10.11902/1005.4537.2023.302
Current Issue | Archive | Adv Search |
Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings
ZHANG Zhaoyi1,2, ZHOU Xuejie1,2(), CHEN Hao1,2, WU Jun1,2, CHEN Zhibiao3, CHEN Zhijian1,2
1. China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China
2. Wuhan Materials Corrosion National Observation and Research Station, Wuhan 430030, China
3. Wuhan Institute of Specification of China Classification Society, Wuhan 430030, China
Cite this article: 

ZHANG Zhaoyi, ZHOU Xuejie, CHEN Hao, WU Jun, CHEN Zhibiao, CHEN Zhijian. Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 735-744.

Download:  HTML  PDF(31284KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

There is limited studies available on the corrosion of carbon steel in freshwater surroundings. Herewith, plates of two ship steels CCSA and Q235B steel were exposed to different sites such as the atmosphere, waterline, and underwater in freshwater surroundings of the Changjiang River (Yangtze River) for 0.5, 1, 2, 3, 4, and 7 a, then there corrosion behavior was assessed by means of morphology analysis, mass-loss measurement, XRD, and electrochemical techniques. Results show that the two carbon steels suffered from significant corrosion in the freshwater surroundings of the Changjiang River, exhibiting nearly the identical corrosion morphology. Their corrosion processes follow a power function law. After 7 years, the corrosion rates of CCSA were found to be 8, 77 and 40 μm·a-1 in the atmosphere, waterline, and underwater, respectively, while the corrosion rates of Q235B were 9, 80, and 41 μm·a-1 in the same conditions. Among others, the corrosion on the waterline was the highest. The composition of the corrosion product of the two carbon steels was similar, primarily including SiO2, α-FeOOH, γ-FeOOH, Fe2O3 and Fe3O4/γ-Fe2O3. Based on the comprehensive electrochemical analysis results, CCSA demonstrated better corrosion resistance than Q235B. Regarding to the test results in various test sites of freshwater surroundings of the Changjiang River, the corrosion rate of the carbon steels may be ranked in descending order as follows: waterline> underwater > atmospheric.

Key words:  CCSA      Q235B      freshwater environment of Changjiang      corrosion     
Received:  21 September 2023      32134.14.1005.4537.2023.302
ZTFLH:  TG174  
Corresponding Authors:  ZHOU Xuejie, zhouxj11@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.302     OR     https://www.jcscp.org/EN/Y2024/V44/I3/735

SteelCSiMnSPCrNi
CCSA≤0.21≤0.50≥2.50≤0.035≤0.035--
Q235B0.12-0.20≤0.300.30-0.70≤0.045≤0.045≤0.30≤0.30
Table 1  Chemical compositions of CCSA and Q235B steels
Fig.1  Macroscopic surface morphologies of CCSA steel after corrosion in atmospheric (a1-a6), waterline (b1-b6), and underwater (c1-c6) areas for 0.5 a (a1-c1), 1 a (a2-c2), 2 a (a3-c3), 3 a (a4-c4), 4 a (a5-c5) and 7 a (a6-c6)
Fig.2  Macroscopic surface morphologies of Q235B steel after corrosion in atmosphere (a1-a6), waterline (b1-b6) and underwater (c1-c6) for 0.5 a (a1-c1), 1 a (a2-c2), 2 a (a3-c3), 3 a (a4-c4), 4 a (a5-c5) and 7 a (a6-c6)
Fig.3  2D (a, c, e, g) and 3D (b, d, f, h) corrosion morphologies of CCSA steel after removal of the rust layers formed in the atmosphere (a, b) and the zones above the waterline (c, d), below the waterline (e, f) and under water (g, h) for 0.5 a (a1-h1), 1 a (a2-h2), 2 a (a3-h3), 3 a (a4-h4), 4 a (a5-h5) and 7 a (a6-h6)
Fig.4  2D (a, c, e, g) and 3D (b, d, f, h) corrosion morphologies of Q235B steel after removal of the rust layers formed in the atmosphere (a, b) and the zones above the waterline (c, d), below the waterline (e, f) and under water (g, h) for 0.5 a (a1-h1), 1 a (a2-h2), 2 a (a3-h3), 3 a (a4-h4), 4 a (a5-h5) and 7 a (a6-h6)
Time/aCCSA steelQ235B steel
Atmos-phereAbove the waterlineBelow the waterlineUnder-waterAtmos-phereAbove the waterlineBelow the waterlineUnder-water
0.545.496.2136.3117.553.1104.6141.2125.4
166.5112.6150.8137.277.8132.3180.9148.7
2120.3189.2281.9193.5154.1200.3298.5220.6
3162.6280.5390.2270.4176.0310.5425.1319.4
4175.7398.8510.3400.4182.0418.3539.3421.1
7222.3671.2802.4796.9224.6732.0853.9827.4
Table 2  Pit depths of CCSA and Q235B steels after exposure in Changjiang freshwater environments
Fig.5  Mass loss curves and fitting results of CCSA (a) and Q235B (b) steels during exposure for 7a in Changjiang freshwater environments
MaterialAreamnR2Fitting formula
CCSAAtmosphere0.019640.409640.95912C = 0.01964T0.40964
Waterline0.106660.721590.97966C = 0.10666T0.72159
Underwater0.063690.643840.98483C = 0.06369T0.64384
Q235BAtmosphere0.021640.420720.95678C = 0.02164T0.42072
Waterline0.108080.733980.98666C = 0.10808T0.73398
Underwater0.064570.654540.98972C = 0.06457T0.65454
Table 3  Fitting results of mass losses of CCSA and Q235B steels in Changjiang freshwater environments
Time / aCCSA steelQ235B steel
AtmosphereWaterlineUnderwaterAtmosphereWaterlineUnderwater
0.52899812910894
129116843112288
217114601911659
313111571511358
4119854139954
78774098041
Table 4  Corrosion rates of CCSA and Q235B steels in Changjiang freshwater environments
Fig.6  XRD patterns of corrosion products of CCSA (a) and Q235B (b) steels in different areas
Corrosion productCCSA steelQ235B steel
AtmosphereWaterlineUnderwaterAtmosphereWaterlineUnderwater
SiO240.5%35.8%58.8%30.5%34.4%50.7%
α-FeOOH15.1%18.9%15.3%12.8%23.0%15.4%
γ-FeOOH35.1%17.2%8.6%45.7%18.7%15.3%
Fe2O37.5%14.4%10.3%8.1%15.5%8.9%
Fe3O4/γ-Fe2O31.8%13.7%7.0%2.9%8.4%9.7%
Table 5  Phase compositions of surface corrosion products formed on CCSA and Q235B steels
Fig.7  Polarization curves of CCSA (a) and Q235B (b) steels in different areas
Fig.8  Fitting results of polarization curves of CCSA and Q235B steels in different areas
1 He J X, Qin X Z, Yi P, et al. Corrosion exposure study on Q235 steel in marine atmospheric [J]. Surf. Technol., 2006, 35(4): 21
何建新, 秦晓洲, 易 平 等. Q235钢海洋大气腐蚀暴露试验研究 [J]. 表面技术, 2006, 35(4): 21
2 Huang G Q, Yang Z H, Ou J C, et al. Corrosion types and evaluation of metallic materials in water environments in China [J]. Corros. Prot., 2010, 31: 255
黄桂桥, 杨朝晖, 欧家才 等. 我国金属材料水环境腐蚀类型及其评定 [J]. 腐蚀与防护, 2010, 31: 255
3 Yan M, Huang G Q. Review and expectation on national network for water environment corrosion test in China [J]. Mar. Sci., 2005, 29(7): 73
颜 民, 黄桂桥. 中国水环境腐蚀试验站网工作回顾与展望 [J]. 海洋科学, 2005, 29(7): 73
4 Sun Y, Wu J J, Zhang D, et al. Investigation of microorganisms in corrosion product scales on Q235 carbon steel exposed to tidal- and full immersion zone at Qindao- and Sanya-sea waters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 333
孙 艳, 吴佳佳, 张 盾 等. 不同海域、不同腐蚀区带Q235碳钢实海挂片腐蚀产物层内微生物调查 [J]. 中国腐蚀与防护学报, 2018, 38: 333
5 Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
doi: 10.1016/j.jmst.2017.11.004
6 Luo X B, Qian J, Su H, et al. Effect of flow velocity on corrosion behavior of typical metal materials for pipes in seawater [J]. Corros. Prot., 2015, 36: 555
罗小兵, 钱 江, 苏 航 等. 海水流速对典型金属管材腐蚀行为的影响 [J]. 腐蚀与防护, 2015, 36: 555
7 Cao G, Gao C, Gan F X. Corrosion behaviors of carbon steel in fresh water [J]. Equip. Environ. Eng., 2006, 3(1): 46
曹 刚, 高 翠, 甘复兴. 碳钢在淡水环境中的腐蚀行为 [J]. 装备环境工程, 2006, 3(1): 46
8 Zulkafli R, Othman N K, Yaakob N. Surface characteristics of carbon steels in the presence of sulfate reducing bacteria consortiums in CO2 gas environment [J]. Sains Malays., 2022, 51: 3113
doi: 10.17576/jsm
9 Jiang L, Cao G, Mao X H, et al. Effect of microbes on early corrosion behavior of Q235 steel in freshwater [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 177
江 莉, 曹 刚, 毛旭辉 等. 淡水微生物对Q235钢早期腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 177
10 Sandu A V, Ciomaga A, Nemtoi G, et al. Corrosion of mild steel by urban river water [J]. Instrum. Sci. Technol., 2015, 43: 545
doi: 10.1080/10739149.2015.1020432
11 Linhardt P. Microbially influenced corrosion of stainless steel by manganese oxidizing microorganisms [J]. Mater. Corros., 2004, 55: 158
12 Yang B J, Wei M M, Yao J H, et al. Corrosion behaviors of 45# and Q235 carbon steel in different water circumstances [J]. Equip. Environ. Eng., 2017, 14(6): 102
杨博均, 魏木孟, 姚敬华 等. 45#钢和Q235在不同水环境中的腐蚀行为研究 [J]. 装备环境工程, 2017, 14(6): 102
13 Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: Fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
曹京宜, 方志刚, 李 亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
doi: 10.11902/1005.4537.2021.003
14 Hao Z K, Chen Z B, Zhang D, et al. Initial corrosion behaviors of ship steel plate in fresh water environment [J]. Equip. Environ. Eng., 2017, 14(9): 73
郝张科, 陈志飚, 张 东 等. 船用钢板材料在淡水环境中初期腐蚀行为 [J]. 装备环境工程, 2017, 14(9): 73
15 Huang J C, Meng X B, Huang Y H, et al. Atmospheric corrosion of carbon steels in tropical and subtropical climates in Southern China [J]. Mater. Corros., 2020, 71: 1400
16 Panchenko Y M, Marshakov A I, Igonin T N, et al. Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function [J]. Corros. Sci., 2014, 88: 306
doi: 10.1016/j.corsci.2014.07.049
17 Sun Z C, Liang C, Chen Y, et al. Corrosion characteristics and prediction model of aluminum alloys in saturated Na2SO4 solution [J]. Mater. Chem. Phys., 2023, 308: 128273
doi: 10.1016/j.matchemphys.2023.128273
18 Yao Y, Liu G J, Li S Z, et al. Research progress on corrosion prediction model of metallic materials for electrical equipment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 983
姚 勇, 刘国军, 黎石竹 等. 金属材料腐蚀预测模型研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 983
19 Mao C L, Xiao K, Dong C F, et al. Corrosion behavior of extra deep drawing cold rolled sheet in stimulative ocean-atmosphere environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 101
毛成亮, 肖 葵, 董超芳 等. 超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 101
doi: 10.11902/1005.4537.2016.202
20 De la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
21 Wu H Y, Luo Y Z, Zhou G E. Corrosion behaviors and mechanical properties of Q235 steel pipes collapsing due to corrosion after 25-year service in urban industrial atmospheric environment [J]. Constr. Build. Mater., 2023, 395: 132342
doi: 10.1016/j.conbuildmat.2023.132342
22 Laleh M, Pathirana M, Tan M Y. Site-specific local polarisation curve measurements for probing localised corrosion and inhibition [J]. Corros. Sci., 2023, 214: 111019
doi: 10.1016/j.corsci.2023.111019
23 Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
doi: 10.11900/0412.1961.2020.00010
宋学鑫, 黄松鹏, 汪 川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
doi: 10.11900/0412.1961.2020.00010
[1] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] ZHANG Ming, GONG Ning, ZHANG Bo, HUO Hongbo, LI Haonan, ZHONG Xiankang. Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[3] XIE Hui, YU Chao, HUA Jing, JIANG Xiu. Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[4] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[5] SUN Jiayu, PENG Wenshan, XING Shaohua. Combined Effect of Stress and Dissolved Oxygen on Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
[6] LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[7] ZHOU Long, LU Jun, DING Wenshan, LI Hao, TAO Tao, SHI Chao, SHAO Yawei, LIU Guangming. Effect of Different Phytates on Corrosion Behaviors of Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[8] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[9] DING Yuzhi, CAO Jinxin, CAO Fengting, LI Tao, TAO Jiantao, WANG Tiegang, GAO Guangyao, FAN Qixiang. Research Progress of Risk-based Inspection Technology in Petrochemical Industry[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566.
[10] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[11] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[12] CEN Yuanyao, LIAO Guangmeng, ZHU Yuqin, ZHAO Fangchao, LIU Cong, HE Jianxin, ZHOU Kun. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[13] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[14] DENG Shuangjiu, LI Chang, YU Menghui, HAN Xing. Prpogation Mechanism of Microcracks Caused by Corrosion of Laser Cladded In625 Coating on Nodular Cast Iron in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[15] XU Jiaxin, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
No Suggested Reading articles found!