|
|
Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions |
ZHANG Chenglong1,2, ZHANG Bin1, ZHU Min1( ), YUAN Yongfeng1, GUO Shaoyi1, YIN Simin1 |
1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. Kyky Technology Co., Ltd., Beijing 100190, China |
|
Cite this article:
ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 725-734.
|
Abstract The corrosion behavior and mechanism of medium entropy equiatomic CoCrNi alloy (MEA) in various NH4Cl solutions (i.e., with 1%, 3% and 8% NH4Cl) were systematically studied by electrochemical test, statistical analysis, and immersion corrosion test. The results show that with the increase of NH4Cl concentration, the corrosion potential (Ecorr) of the MEA shifts negatively, the passive current density (Ip) increases, and the corrosion rate rises, indicating that the corrosion resistance of the alloy decreases. When the concentrations of NH4Cl solution are 3% and 8%, the anodic polarization curve displays a clear active-passive transition zone, which means that the passivity of the MEA is reduced. In addition, as NH4Cl concentration increases, the defect density within the passivation film on the MEA increases significantly, the thickness of the film decreases, and its stability declines, which weakens the protection ability of the film. The combined effect between NH4+ and Cl- promotes the nucleation and development of metastable pitting corrosion, while in the high concentration of NH4Cl solution, the metastable pits are difficult to be re-passivated, and easy to develop into steady pits. In general, the main corrosion form of the MEA is pitting corrosion.
|
Received: 26 May 2023
32134.14.1005.4537.2023.177
|
|
Fund: Natural Science Foundation of Zhejiang Province(LY18E010004);Fundamental Research Funds of Zhejiang Sci-Tech University(22242293-Y) |
Corresponding Authors:
ZHU Min, E-mail:zmii2009@163.com
|
1 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
|
2 |
Wang J Y, Yang H L, Huang H, et al. In-situ Mo nanoparticles strengthened CoCrNi medium entropy alloy [J]. J. Alloys. Compd., 2019, 798: 576
doi: 10.1016/j.jallcom.2019.05.208
|
3 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
|
4 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
|
5 |
Wang J Y, Yang H L, Ruan J M, et al. Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering [J]. J. Mater. Res., 2019, 34: 2126
doi: 10.1557/jmr.2019.96
|
6 |
Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
|
7 |
Moravcik I, Hadraba H, Li L L, et al. Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility [J]. Scr. Mater., 2020, 178: 391
doi: 10.1016/j.scriptamat.2019.12.007
|
8 |
George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
|
9 |
Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
doi: 10.1016/j.intermet.2013.10.024
|
10 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
11 |
Moravcik I, Cizek J, Kovacova Z, et al. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy [J]. Mater. Sci. Eng., 2017, 701A: 370
|
12 |
Lu K J, Chauhan A, Walter M, et al. Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi [J]. Scr. Mater., 2021, 194: 113667
doi: 10.1016/j.scriptamat.2020.113667
|
13 |
Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
doi: 10.1016/j.actamat.2017.02.036
|
14 |
Wang J Y, Li W H, Yang H L, et al. Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions [J]. Corros. Sci., 2020, 177: 108973
doi: 10.1016/j.corsci.2020.108973
|
15 |
Moravcik I, Peighambardoust N S, Motallebzadeh A, et al. Interstitial nitrogen enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution [J]. Mater. Charact., 2021, 172: 110869
doi: 10.1016/j.matchar.2020.110869
|
16 |
Zhang Z J, Yuan T C, Li R D. Corrosion performance of selective laser-melted equimolar CrCoNi medium-entropy alloy vs its cast counterpart in 3.5 wt% NaCl [J]. J. Alloys. Compd., 2021, 864: 158105
doi: 10.1016/j.jallcom.2020.158105
|
17 |
Toba K, Suzuki T, Kawano K, et al. Effect of relative humidity on ammonium chloride corrosion in refineries [J]. Corrosion, 2011, 67: 055005
|
18 |
Li Q, Xia X J, Pei Z B, et al. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method [J]. npj Mater. Degrad., 2022, 6: 1
doi: 10.1038/s41529-021-00211-3
|
19 |
Ding J H, Zhang L, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures [J]. Appl. Surf. Sci., 2014, 289: 33
doi: 10.1016/j.apsusc.2013.10.080
|
20 |
Ernst P, Newman R C. Pit growth studies in stainless steel foils. II. Effect of temperature, chloride concentration and sulphate addition [J]. Corros. Sci., 2002, 44: 943
doi: 10.1016/S0010-938X(01)00134-2
|
21 |
Du N, Tian W M, Zhao Q, et al. Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5%NaCl solution [J]. Acta Metall. Sin., 2012, 48: 807
doi: 10.3724/SP.J.1037.2012.00005
|
|
杜 楠, 田文明, 赵 晴 等. 304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理 [J]. 金属学报, 2012, 48: 807
|
22 |
Dastgerdi A A, Brenna A, Ormellese M, et al. Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel [J]. Corros. Sci., 2019, 159: 108160
doi: 10.1016/j.corsci.2019.108160
|
23 |
Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
doi: 10.1016/j.electacta.2014.02.107
|
24 |
Monrrabal G, Bautista A, Guzman S, et al. Influence of the cold working induced martensite on the electrochemical behavior of AISI 304 stainless steel surfaces [J]. J. Mater. Res. Technol., 2019, 8: 1335
doi: 10.1016/j.jmrt.2018.10.004
|
25 |
Chuaiphan W, Srijaroenpramong L. Evaluation of microstructure, mechanical properties and pitting corrosion in dissimilar of alternative low cost stainless steel grade 204Cu and 304 by GTA welding joint [J]. J. Mater. Res. Technol., 2020, 9: 5174
doi: 10.1016/j.jmrt.2020.03.034
|
26 |
Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
doi: 10.1016/j.corsci.2020.108520
|
27 |
Tian H Y, Fan L, Li Y Z, et al. Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment [J]. J. Electroanal. Chem., 2021, 894: 115368
doi: 10.1016/j.jelechem.2021.115368
|
28 |
Kritzer P, Boukis N, Dinjus E. Transpassive dissolution of alloy 625, chromium, nickel, and molybdenum in high-temperature solutions containing hydrochloric acid and oxygen [J]. Corrosion, 2000, 56: 265
doi: 10.5006/1.3287652
|
29 |
Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
doi: 10.1016/j.electacta.2018.05.059
|
30 |
Pan H, Wang L W, Lin Y, et al. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution [J]. J. Mater. Sci. Technol., 2020, 54: 1
doi: 10.1016/j.jmst.2020.02.074
|
31 |
Zhu M, He F, Yuan Y F, et al. A comparative study on the corrosion behavior of CoCrNi medium-entropy alloy and 316L stainless steel in simulated marine environment [J]. Intermetallics, 2021, 139: 107370
doi: 10.1016/j.intermet.2021.107370
|
32 |
Zhu M, Zhang C L, Yuan Y F, et al. The corrosion behavior of CoCrNi medium entropy alloy with alternating current interference in carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2023, 32: 1
doi: 10.1007/s11665-022-07059-x
|
33 |
Araneda A A B, Kappes M A, Rodríguez M A, et al. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions [J]. Corros. Sci., 2022, 198: 110121
doi: 10.1016/j.corsci.2022.110121
|
34 |
Cui Z Y, Chen S S, Dou Y P, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH [J]. Corros. Sci., 2019, 150: 218
doi: 10.1016/j.corsci.2019.02.002
|
35 |
Chumlyakov Y I, Kireeva I V, Korotaev A D, et al. Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels, [J]. Russ. Phys. J., 1996, 39: 189
doi: 10.1007/BF02067642
|
36 |
Fernández-Domene R M, Blasco-Tamarit E, García-García D M, et al. Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution [J]. Electrochim. Acta, 2013, 95: 1
doi: 10.1016/j.electacta.2013.02.024
|
37 |
Luo H, Su H Z, Dong C F, et al. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution [J]. Appl. Surf. Sci., 2017, 400: 38
doi: 10.1016/j.apsusc.2016.12.180
|
38 |
Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
doi: 10.1016/j.corsci.2018.02.031
|
39 |
Mao F X, Dong C F, Sharifi-Asl S, et al. Passivity breakdown on copper: influence of chloride ion [J]. Electrochim. Acta, 2014, 144: 391
doi: 10.1016/j.electacta.2014.07.160
|
40 |
Feng H, Li H B, Wu X L, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34: 1781
doi: 10.1016/j.jmst.2018.03.021
|
41 |
Macdonald D D. The history of the point defect model for the passive state: a brief review of film growth aspects [J]. Electrochim. Acta, 2011, 56: 1761
doi: 10.1016/j.electacta.2010.11.005
|
42 |
Ahn S J, Kwon H S, Macdonald D D. Role of chloride ion in passivity breakdown on iron and nickel [J]. J. Electrochem. Soc., 2005, 152: B482
doi: 10.1149/1.2048247
|
43 |
Zhao B Z, Zhu M, Yuan Y Y, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
|
|
赵宝珠, 朱 敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42: 425
doi: 10.11902/1005.4537.2021.161
|
44 |
Ningshen S, Mudali U K, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci., 2007, 49: 481
doi: 10.1016/j.corsci.2006.05.041
|
45 |
Bai G S, Lu S P, Li D Z, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of super 304H austenitic stainless steel [J]. J. Electrochem. Soc., 2015, 162: C473
doi: 10.1149/2.0601509jes
|
46 |
Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
doi: 10.1016/j.corsci.2008.03.006
|
47 |
Liu S, Sun H Y, Sun L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution [J]. Corros. Sci., 2012, 65: 520
doi: 10.1016/j.corsci.2012.08.056
|
48 |
Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
|
|
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
|
49 |
Tang Y M, Zuo Y. The metastable pitting of mild steel in bicarbonate solutions [J]. Mater. Chem. Phys., 2004, 88: 221
doi: 10.1016/j.matchemphys.2004.07.014
|
50 |
Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros. Sci., 1992, 33: 1885
doi: 10.1016/0010-938X(92)90191-5
|
51 |
Mattin S P, Burstein G T. Detailed resolution of microscopic depassivation events on stainless steel in chloride solution leading to pitting [J]. Phil. Mag. Lett., 1997, 76: 341
doi: 10.1080/095008397178940
|
52 |
Krakowiak S, Darowicki K, Ślepski P. Impedance of metastable pitting corrosion [J]. J. Electroanal. Chem., 2005, 575: 33
doi: 10.1016/j.jelechem.2004.09.001
|
53 |
Naghizadeh M, Nakhaie D, Zakeri M, et al. The effect of dichromate ion on the pitting corrosion of AISI 316 stainless steel part II: pit initiation and transition to stability [J]. Corros. Sci., 2015, 94: 420
doi: 10.1016/j.corsci.2015.02.025
|
54 |
Burstein G T, Pistorius P C, Mattin S P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 57
doi: 10.1016/0010-938X(93)90133-2
|
55 |
Ebrahimi N, Moayed M H, Davoodi A. Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium [J]. Corros. Sci., 2011, 53: 1278
doi: 10.1016/j.corsci.2010.12.019
|
56 |
Shojaei E, Moayed M H, Mirjalili M, et al. Proposed stability product criterion for open hemispherical metastable pits formed in the crevices of different aspect ratios (l/d) on 316L stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109389
doi: 10.1016/j.corsci.2021.109389
|
57 |
Man C, Dong C F, Liang J X, et al. Characterization of the passive film and corrosion of martensitic AM355 stainless steel [J]. Anal. Lett., 2017, 50: 1091
doi: 10.1080/00032719.2016.1210617
|
58 |
Xie H, Yu C, Hua J, et al. Effect of NH+4 concentration on corrosion behavior of N80 steel in saturated-CO2 3%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 4:
|
|
解 辉, 于 超, 花 靖 等. NH+4浓度对N80钢在饱和CO2的3%NaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 4:
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|