Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 725-734    DOI: 10.11902/1005.4537.2023.177
Current Issue | Archive | Adv Search |
Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions
ZHANG Chenglong1,2, ZHANG Bin1, ZHU Min1(), YUAN Yongfeng1, GUO Shaoyi1, YIN Simin1
1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Kyky Technology Co., Ltd., Beijing 100190, China
Cite this article: 

ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 725-734.

Download:  HTML  PDF(6523KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior and mechanism of medium entropy equiatomic CoCrNi alloy (MEA) in various NH4Cl solutions (i.e., with 1%, 3% and 8% NH4Cl) were systematically studied by electrochemical test, statistical analysis, and immersion corrosion test. The results show that with the increase of NH4Cl concentration, the corrosion potential (Ecorr) of the MEA shifts negatively, the passive current density (Ip) increases, and the corrosion rate rises, indicating that the corrosion resistance of the alloy decreases. When the concentrations of NH4Cl solution are 3% and 8%, the anodic polarization curve displays a clear active-passive transition zone, which means that the passivity of the MEA is reduced. In addition, as NH4Cl concentration increases, the defect density within the passivation film on the MEA increases significantly, the thickness of the film decreases, and its stability declines, which weakens the protection ability of the film. The combined effect between NH4+ and Cl- promotes the nucleation and development of metastable pitting corrosion, while in the high concentration of NH4Cl solution, the metastable pits are difficult to be re-passivated, and easy to develop into steady pits. In general, the main corrosion form of the MEA is pitting corrosion.

Key words:  MEA      corrosion behavior      metastable pitting corrosion      passive film     
Received:  26 May 2023      32134.14.1005.4537.2023.177
ZTFLH:  TG178  
Fund: Natural Science Foundation of Zhejiang Province(LY18E010004);Fundamental Research Funds of Zhejiang Sci-Tech University(22242293-Y)
Corresponding Authors:  ZHU Min, E-mail:zmii2009@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.177     OR     https://www.jcscp.org/EN/Y2024/V44/I3/725

Fig.1  Microstructure of CoCrNi MEA
Fig.2  OCP of the MEA in NH4Cl solutions with different concentrations
Fig.3  Potentiodynamic polarization curves of the MEA in NH4Cl solutions with different concentrations
Mass fracton of NH4Cl / %Ecorr / VIp / 10-7 A⋅cm-2Epit / VEpp / VIpp / 10-6 A⋅cm-2
1-0.4106.1350.538--
3-0.5707.4570.527-0.4711.523
8-0.64308.870.468-0.4521.990
Table 1  Fitting results of potentiodynamic polarization curves
Fig.4  Nyquist (a) and Bode (b, c) plots of the MEA in NH4Cl solutions, and equivalent circuit for fitting EIS data (d)
Mass fraction of NH4Cl / %Rs / Ω·cm2Rf / 104 Ω·cm2Qf / 10-5 F·cm-2Qdl / 10-5 F·cm-2Rct / 106 Ω·cm2
124.881.2871.5691.7591.599
39.0350.92251.274.2951.372
84.0140.34941.634.5891.138
Table 2  Fitting results of the EIS data
Fig.5  Rf and Rct values of the MEA in NH4Cl solutions
Fig.6  Mott-Schottky plots (a), carrier densities (b) and thickness (c) of the passive films formed on the MEA in NH4Cl solutions
Fig.7  Cyclic-polarization curves (a) and hysteresis ring areas (b) of the MEA in NH4Cl solutions
Fig.8  Current-time transient curves of the MEA in the solutions containing 1% (a), 3% (b) and 8% (c) NH4Cl
Fig.9  Single peak (a) and overlapped peak (b) of metastable pitting of the MEA
Fig.10  Average pit number density (a), peak value of current transient (b) and lifetime of metastable pitting (c) of the MEA in NH4Cl solutions
Fig.11  Metastable pitting morphology of the MEA immersed in 8% NH4Cl solution
Fig.12  Average corrosion rates of the MEA in NH4Cl solutions with different concentrations
Fig.13  Corrosion morphologies of the MEA immersed for 5 d in the solutions containing 1% (a1, a2), 3% (b1, b2) and 8% (c1, c2) NH4Cl
1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
2 Wang J Y, Yang H L, Huang H, et al. In-situ Mo nanoparticles strengthened CoCrNi medium entropy alloy [J]. J. Alloys. Compd., 2019, 798: 576
doi: 10.1016/j.jallcom.2019.05.208
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
4 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
5 Wang J Y, Yang H L, Ruan J M, et al. Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering [J]. J. Mater. Res., 2019, 34: 2126
doi: 10.1557/jmr.2019.96
6 Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
7 Moravcik I, Hadraba H, Li L L, et al. Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility [J]. Scr. Mater., 2020, 178: 391
doi: 10.1016/j.scriptamat.2019.12.007
8 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
9 Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
doi: 10.1016/j.intermet.2013.10.024
10 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
11 Moravcik I, Cizek J, Kovacova Z, et al. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy [J]. Mater. Sci. Eng., 2017, 701A: 370
12 Lu K J, Chauhan A, Walter M, et al. Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi [J]. Scr. Mater., 2021, 194: 113667
doi: 10.1016/j.scriptamat.2020.113667
13 Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
doi: 10.1016/j.actamat.2017.02.036
14 Wang J Y, Li W H, Yang H L, et al. Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions [J]. Corros. Sci., 2020, 177: 108973
doi: 10.1016/j.corsci.2020.108973
15 Moravcik I, Peighambardoust N S, Motallebzadeh A, et al. Interstitial nitrogen enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution [J]. Mater. Charact., 2021, 172: 110869
doi: 10.1016/j.matchar.2020.110869
16 Zhang Z J, Yuan T C, Li R D. Corrosion performance of selective laser-melted equimolar CrCoNi medium-entropy alloy vs its cast counterpart in 3.5 wt% NaCl [J]. J. Alloys. Compd., 2021, 864: 158105
doi: 10.1016/j.jallcom.2020.158105
17 Toba K, Suzuki T, Kawano K, et al. Effect of relative humidity on ammonium chloride corrosion in refineries [J]. Corrosion, 2011, 67: 055005
18 Li Q, Xia X J, Pei Z B, et al. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method [J]. npj Mater. Degrad., 2022, 6: 1
doi: 10.1038/s41529-021-00211-3
19 Ding J H, Zhang L, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures [J]. Appl. Surf. Sci., 2014, 289: 33
doi: 10.1016/j.apsusc.2013.10.080
20 Ernst P, Newman R C. Pit growth studies in stainless steel foils. II. Effect of temperature, chloride concentration and sulphate addition [J]. Corros. Sci., 2002, 44: 943
doi: 10.1016/S0010-938X(01)00134-2
21 Du N, Tian W M, Zhao Q, et al. Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5%NaCl solution [J]. Acta Metall. Sin., 2012, 48: 807
doi: 10.3724/SP.J.1037.2012.00005
杜 楠, 田文明, 赵 晴 等. 304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理 [J]. 金属学报, 2012, 48: 807
22 Dastgerdi A A, Brenna A, Ormellese M, et al. Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel [J]. Corros. Sci., 2019, 159: 108160
doi: 10.1016/j.corsci.2019.108160
23 Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
doi: 10.1016/j.electacta.2014.02.107
24 Monrrabal G, Bautista A, Guzman S, et al. Influence of the cold working induced martensite on the electrochemical behavior of AISI 304 stainless steel surfaces [J]. J. Mater. Res. Technol., 2019, 8: 1335
doi: 10.1016/j.jmrt.2018.10.004
25 Chuaiphan W, Srijaroenpramong L. Evaluation of microstructure, mechanical properties and pitting corrosion in dissimilar of alternative low cost stainless steel grade 204Cu and 304 by GTA welding joint [J]. J. Mater. Res. Technol., 2020, 9: 5174
doi: 10.1016/j.jmrt.2020.03.034
26 Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
doi: 10.1016/j.corsci.2020.108520
27 Tian H Y, Fan L, Li Y Z, et al. Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment [J]. J. Electroanal. Chem., 2021, 894: 115368
doi: 10.1016/j.jelechem.2021.115368
28 Kritzer P, Boukis N, Dinjus E. Transpassive dissolution of alloy 625, chromium, nickel, and molybdenum in high-temperature solutions containing hydrochloric acid and oxygen [J]. Corrosion, 2000, 56: 265
doi: 10.5006/1.3287652
29 Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
doi: 10.1016/j.electacta.2018.05.059
30 Pan H, Wang L W, Lin Y, et al. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution [J]. J. Mater. Sci. Technol., 2020, 54: 1
doi: 10.1016/j.jmst.2020.02.074
31 Zhu M, He F, Yuan Y F, et al. A comparative study on the corrosion behavior of CoCrNi medium-entropy alloy and 316L stainless steel in simulated marine environment [J]. Intermetallics, 2021, 139: 107370
doi: 10.1016/j.intermet.2021.107370
32 Zhu M, Zhang C L, Yuan Y F, et al. The corrosion behavior of CoCrNi medium entropy alloy with alternating current interference in carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2023, 32: 1
doi: 10.1007/s11665-022-07059-x
33 Araneda A A B, Kappes M A, Rodríguez M A, et al. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions [J]. Corros. Sci., 2022, 198: 110121
doi: 10.1016/j.corsci.2022.110121
34 Cui Z Y, Chen S S, Dou Y P, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH [J]. Corros. Sci., 2019, 150: 218
doi: 10.1016/j.corsci.2019.02.002
35 Chumlyakov Y I, Kireeva I V, Korotaev A D, et al. Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels, [J]. Russ. Phys. J., 1996, 39: 189
doi: 10.1007/BF02067642
36 Fernández-Domene R M, Blasco-Tamarit E, García-García D M, et al. Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution [J]. Electrochim. Acta, 2013, 95: 1
doi: 10.1016/j.electacta.2013.02.024
37 Luo H, Su H Z, Dong C F, et al. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution [J]. Appl. Surf. Sci., 2017, 400: 38
doi: 10.1016/j.apsusc.2016.12.180
38 Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
doi: 10.1016/j.corsci.2018.02.031
39 Mao F X, Dong C F, Sharifi-Asl S, et al. Passivity breakdown on copper: influence of chloride ion [J]. Electrochim. Acta, 2014, 144: 391
doi: 10.1016/j.electacta.2014.07.160
40 Feng H, Li H B, Wu X L, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34: 1781
doi: 10.1016/j.jmst.2018.03.021
41 Macdonald D D. The history of the point defect model for the passive state: a brief review of film growth aspects [J]. Electrochim. Acta, 2011, 56: 1761
doi: 10.1016/j.electacta.2010.11.005
42 Ahn S J, Kwon H S, Macdonald D D. Role of chloride ion in passivity breakdown on iron and nickel [J]. J. Electrochem. Soc., 2005, 152: B482
doi: 10.1149/1.2048247
43 Zhao B Z, Zhu M, Yuan Y Y, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
赵宝珠, 朱 敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42: 425
doi: 10.11902/1005.4537.2021.161
44 Ningshen S, Mudali U K, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci., 2007, 49: 481
doi: 10.1016/j.corsci.2006.05.041
45 Bai G S, Lu S P, Li D Z, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of super 304H austenitic stainless steel [J]. J. Electrochem. Soc., 2015, 162: C473
doi: 10.1149/2.0601509jes
46 Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
doi: 10.1016/j.corsci.2008.03.006
47 Liu S, Sun H Y, Sun L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution [J]. Corros. Sci., 2012, 65: 520
doi: 10.1016/j.corsci.2012.08.056
48 Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
49 Tang Y M, Zuo Y. The metastable pitting of mild steel in bicarbonate solutions [J]. Mater. Chem. Phys., 2004, 88: 221
doi: 10.1016/j.matchemphys.2004.07.014
50 Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros. Sci., 1992, 33: 1885
doi: 10.1016/0010-938X(92)90191-5
51 Mattin S P, Burstein G T. Detailed resolution of microscopic depassivation events on stainless steel in chloride solution leading to pitting [J]. Phil. Mag. Lett., 1997, 76: 341
doi: 10.1080/095008397178940
52 Krakowiak S, Darowicki K, Ślepski P. Impedance of metastable pitting corrosion [J]. J. Electroanal. Chem., 2005, 575: 33
doi: 10.1016/j.jelechem.2004.09.001
53 Naghizadeh M, Nakhaie D, Zakeri M, et al. The effect of dichromate ion on the pitting corrosion of AISI 316 stainless steel part II: pit initiation and transition to stability [J]. Corros. Sci., 2015, 94: 420
doi: 10.1016/j.corsci.2015.02.025
54 Burstein G T, Pistorius P C, Mattin S P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 57
doi: 10.1016/0010-938X(93)90133-2
55 Ebrahimi N, Moayed M H, Davoodi A. Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium [J]. Corros. Sci., 2011, 53: 1278
doi: 10.1016/j.corsci.2010.12.019
56 Shojaei E, Moayed M H, Mirjalili M, et al. Proposed stability product criterion for open hemispherical metastable pits formed in the crevices of different aspect ratios (l/d) on 316L stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109389
doi: 10.1016/j.corsci.2021.109389
57 Man C, Dong C F, Liang J X, et al. Characterization of the passive film and corrosion of martensitic AM355 stainless steel [J]. Anal. Lett., 2017, 50: 1091
doi: 10.1080/00032719.2016.1210617
58 Xie H, Yu C, Hua J, et al. Effect of NH+4 concentration on corrosion behavior of N80 steel in saturated-CO2 3%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 4:
解 辉, 于 超, 花 靖 等. NH+4浓度对N80钢在饱和CO2的3%NaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 4:
[1] LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[2] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[3] LONG Mengxiang, FU Guicui, WAN Bo, ZHANG Zhongqing. Corrosion Area Identification of Sheet Metal Based on K-means++ Clustering Algorithm and SSIM Index[J]. 中国腐蚀与防护学报, 2024, 44(2): 437-444.
[4] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[5] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[6] CHANG Xueting, SONG Jiaqi, WANG Bing, WANG Dongsheng, CHEN Wencong, WANG Haifeng. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[7] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[8] WANG Quanrun, HOU Jin, HOU Baorong, TIAN Huiwen. Research Progress of Analytical Methods for Vapor Phase Inhibitors[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[9] ZHOU Xin, WU Dakang, CHENG Xu, HU Junying, ZHONG Xiankang. Research Progress of Detection Techniques for Permeated Hydrogen[J]. 中国腐蚀与防护学报, 2023, 43(6): 1203-1215.
[10] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[11] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[12] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[13] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[14] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[15] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
No Suggested Reading articles found!