|
|
|
| Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation |
HAN Dongxiao1, JI Wenhui2, WANG Tong2, WANG Wei2( ) |
1.Beijing Shiny Tech. Co. Ltd., Beijing 100039, China 2.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
|
Cite this article:
HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 489-496.
|
|
|
Abstract In fact, the variation of water content within an organic coating will affect its corrosion protection performance. Thus, the penetration of water in an epoxy coating would be studied via distribution of relaxation time (DRT) technique and finite element simulation method in terms of the perspective of micro electrochemistry in this article. Results show that the water penetration process of the epoxy coating may be differentiated into three stages: initial stage, saturation stage and failure stage. In the three stages, the different content of water and corrosive medium inside the coating can seriously affect the variation of capacitance of the coating. This paper provides a new comprehensive analysis method for the mechanism study of organic protective coatings.
|
|
Received: 04 May 2023
32134.14.1005.4537.2023.131
|
|
|
| Fund: National Natural Science Foundation of China(42076039) |
Corresponding Authors:
WANG Wei, E-mail: wangwei8038@ouc.edu.cn
|
| 1 |
Ye Z Q, Tang Z X, Meng G Z, et al. Mussel-inspired preparation of dispersible mica nanosheets for waterborne epoxy coatings with reinforced anticorrosive performance[J]. Prog. Org. Coat., 2023, 175: 107379
|
| 2 |
Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China[J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
|
| 3 |
El Ibrahimi B, Jmiai A, Bazzi L, et al. Amino acids and their derivatives as corrosion inhibitors for metals and alloys[J]. Arab. J. Chem., 2020, 13: 740
doi: 10.1016/j.arabjc.2017.07.013
|
| 4 |
Gong W N, Yin X S, Liu Y, et al. 2-Amino-4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium[J]. Prog. Org. Coat., 2019, 126: 150
|
| 5 |
Glover C F, Cain T W, Scully J R. Performance of Mg-Sn surface alloys for the sacrificial cathodic protection of Mg alloy AZ31B-H24[J]. Corros. Sci., 2019, 149: 195
doi: 10.1016/j.corsci.2019.01.015
|
| 6 |
Wan S, Chen H K, Ma X Z, et al. Anticorrosive reinforcement of waterborne epoxy coating on Q235 steel using NZ/BNNS nanocomposites[J]. Prog. Org. Coat., 2021, 159: 106410
|
| 7 |
Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
|
|
陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43: 345
doi: 10.11902/1005.4537.2022.089
|
| 8 |
Lavaert V, De Cock M, Moors M, et al. Influence of pores on the quality of a silicon polyester coated galvanised steel system[J]. Prog. Org. Coat., 2000, 38: 213
doi: 10.1016/S0300-9440(00)00107-7
|
| 9 |
Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
|
|
高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
|
| 10 |
He J, Yan R, Ma S N. Study on corrosion behaviors of epoxy coatings/substrate immersed in 3.5%NaCl solution by electrochemical methods[J]. China Surf. Eng., 2006, 19(2): 47
|
|
何 杰, 阎 瑞, 马世宁. 电化学方法研究环氧涂层/基体在3.5%NaCl溶液中的腐蚀行为[J]. 中国表面工程, 2006, 19(2): 47
|
| 11 |
Schichlein H, Müller A C, Voigts M, et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells[J]. J. Appl. Electrochem., 2002, 32: 875
doi: 10.1023/A:1020599525160
|
| 12 |
Fuoss R M, Kirkwood J G. Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems[J]. J. Am. Chem. Soc., 1941, 63: 385
doi: 10.1021/ja01847a013
|
| 13 |
Ciucci F, Chen C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach[J]. Electrochim. Acta, 2015, 167: 439
doi: 10.1016/j.electacta.2015.03.123
|
| 14 |
Shi W Y, Jia C, Zhang Y L, et al. Differentiation and decomposition of solid oxide fuel cell electrochemical impedance spectra[J]. Acta Phys. -Chim. Sin., 2019, 35: 509
doi: 10.3866/PKU.WHXB201806071
|
|
施王影, 贾 川, 张永亮 等. 固体氧化物燃料电池电化学阻抗谱差异化研究方法和分解[J]. 物理化学学报, 2019, 35: 509
|
| 15 |
Loew N, Watanabe H, Shitanda I, et al. Electrochemical impedance spectroscopy: simultaneous detection of different diffusion behaviors as seen in finite element method simulations of mediator-type enzyme electrodes[J]. Electrochim. Acta, 2022, 421: 140467
doi: 10.1016/j.electacta.2022.140467
|
| 16 |
Wang T, Wang W. Distribution of relaxation time of polydimethylsiloxane coatings during self-healing process[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 337
|
|
王 通, 王 巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43: 337
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|