Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 489-496    DOI: 10.11902/1005.4537.2023.131
Current Issue | Archive | Adv Search |
Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation
HAN Dongxiao1, JI Wenhui2, WANG Tong2, WANG Wei2()
1.Beijing Shiny Tech. Co. Ltd., Beijing 100039, China
2.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 489-496.

Download:  HTML  PDF(4848KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In fact, the variation of water content within an organic coating will affect its corrosion protection performance. Thus, the penetration of water in an epoxy coating would be studied via distribution of relaxation time (DRT) technique and finite element simulation method in terms of the perspective of micro electrochemistry in this article. Results show that the water penetration process of the epoxy coating may be differentiated into three stages: initial stage, saturation stage and failure stage. In the three stages, the different content of water and corrosive medium inside the coating can seriously affect the variation of capacitance of the coating. This paper provides a new comprehensive analysis method for the mechanism study of organic protective coatings.

Key words:  epoxy coating      water penetration      distribution of relaxation time      finite element simulation      corrosion mechanism     
Received:  04 May 2023      32134.14.1005.4537.2023.131
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(42076039)
Corresponding Authors:  WANG Wei, E-mail: wangwei8038@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.131     OR     https://www.jcscp.org/EN/Y2024/V44/I2/489

Fig.1  Nyquist (a) and Bode (b) plots of water seepage process of epoxy coating
Fig.2  Equivalent circuit model of water seepage process of epoxy coating
Fig.3  DRT plots of water seepage process of epoxy coating: (a) 1-60 d, (b) 10-60 d
Fig.4  DRT peaks-splitting plots of water seepage process of epoxy coating: (a) 1 d, (b) 2 d, (c) 3 d, (d) 10 d, (e) 20 d, (f) 30 d, (g) 40 d, (h) 50 d, (i) 60 d
Time / dτ1τ2τ3
lgτ1Arealgτ2Arealgτ3Area
1-0.111675.4%--1.550824.6%
2-0.429077.2%--1.483927.8%
3-0.823139.0%-0.253236.4%1.432224.6%
10-1.218637.5%-0.159336.5%1.321126.0%
20-1.314232.3%-0.188437.8%1.307229.9%
30-1.322133.9%-0.245036.1%1.255130.0%
40-1.420447.8%-0.303128.6%1.330423.6%
50-1.713168.3%-0.180020.2%1.345211.5%
60-1.965261.0%-0.238618.3%1.108420.7%
Table 1  DRT analysis of time constant position and area ration of water seepage process of epoxy coating
Fig.5  Change diagram of OCP (a) and |Z|0.01 Hz (b) in water seepage process of epoxy coating
Fig.6  Change diagram of Cc in water seepage process of epoxy coating
Fig.7  Location monitoring points in the coating (a) and simulation change plots of Cl- concentration of location monitoring points in water seepage process of epoxy coating (b)
Fig.8  Simulation change diagram of concentration of Cl- in water seepage process of epoxy coating
1 Ye Z Q, Tang Z X, Meng G Z, et al. Mussel-inspired preparation of dispersible mica nanosheets for waterborne epoxy coatings with reinforced anticorrosive performance[J]. Prog. Org. Coat., 2023, 175: 107379
2 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China[J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
3 El Ibrahimi B, Jmiai A, Bazzi L, et al. Amino acids and their derivatives as corrosion inhibitors for metals and alloys[J]. Arab. J. Chem., 2020, 13: 740
doi: 10.1016/j.arabjc.2017.07.013
4 Gong W N, Yin X S, Liu Y, et al. 2-Amino-4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium[J]. Prog. Org. Coat., 2019, 126: 150
5 Glover C F, Cain T W, Scully J R. Performance of Mg-Sn surface alloys for the sacrificial cathodic protection of Mg alloy AZ31B-H24[J]. Corros. Sci., 2019, 149: 195
doi: 10.1016/j.corsci.2019.01.015
6 Wan S, Chen H K, Ma X Z, et al. Anticorrosive reinforcement of waterborne epoxy coating on Q235 steel using NZ/BNNS nanocomposites[J]. Prog. Org. Coat., 2021, 159: 106410
7 Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43: 345
doi: 10.11902/1005.4537.2022.089
8 Lavaert V, De Cock M, Moors M, et al. Influence of pores on the quality of a silicon polyester coated galvanised steel system[J]. Prog. Org. Coat., 2000, 38: 213
doi: 10.1016/S0300-9440(00)00107-7
9 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
10 He J, Yan R, Ma S N. Study on corrosion behaviors of epoxy coatings/substrate immersed in 3.5%NaCl solution by electrochemical methods[J]. China Surf. Eng., 2006, 19(2): 47
何 杰, 阎 瑞, 马世宁. 电化学方法研究环氧涂层/基体在3.5%NaCl溶液中的腐蚀行为[J]. 中国表面工程, 2006, 19(2): 47
11 Schichlein H, Müller A C, Voigts M, et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells[J]. J. Appl. Electrochem., 2002, 32: 875
doi: 10.1023/A:1020599525160
12 Fuoss R M, Kirkwood J G. Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems[J]. J. Am. Chem. Soc., 1941, 63: 385
doi: 10.1021/ja01847a013
13 Ciucci F, Chen C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach[J]. Electrochim. Acta, 2015, 167: 439
doi: 10.1016/j.electacta.2015.03.123
14 Shi W Y, Jia C, Zhang Y L, et al. Differentiation and decomposition of solid oxide fuel cell electrochemical impedance spectra[J]. Acta Phys. -Chim. Sin., 2019, 35: 509
doi: 10.3866/PKU.WHXB201806071
施王影, 贾 川, 张永亮 等. 固体氧化物燃料电池电化学阻抗谱差异化研究方法和分解[J]. 物理化学学报, 2019, 35: 509
15 Loew N, Watanabe H, Shitanda I, et al. Electrochemical impedance spectroscopy: simultaneous detection of different diffusion behaviors as seen in finite element method simulations of mediator-type enzyme electrodes[J]. Electrochim. Acta, 2022, 421: 140467
doi: 10.1016/j.electacta.2022.140467
16 Wang T, Wang W. Distribution of relaxation time of polydimethylsiloxane coatings during self-healing process[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 337
王 通, 王 巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43: 337
[1] LING Dong, HE Kun, YU Liang, DONG Lijin, ZHANG Huali, LI Yufei, WANG Qinying, ZHANG Zhi. Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[2] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[3] ZHAO Lu, LI Qian, ZHAO Tianliang. Corrosion Behavior and Sealing Technologies of Bronze[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[4] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[5] WANG Jin, NING Peidong, LIU Qianqian, CHEN Nana, ZHANG Xin, XIAO Kui. Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[6] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[7] LIU Mingming, YANG Xiaobing, CHEN Xiaoqi, WANG Zhengbin, ZHENG Yugui, HE Chunlin. Research Progress on Corrosion Behavior of Metallic Materials in Acetic Acid Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 13-21.
[8] WANG Tengyu, ZHANG Zhenggui, LU Weizhong, WU Xige. Effect of Alternating Pressure on Electrochemical Behavior of Solvent-free Epoxy Coating in Simulated Ultra-deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[9] GAO Qiuying, XU Yixuan, HU Pengwei, YAO Tianwan, QI Wenlong. Corrosion and Protection Technique of Regeneration Tower Bottom Reboiler in Natural Gas Purification Unit[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[10] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[11] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[12] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[13] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[14] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
No Suggested Reading articles found!