Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 497-504    DOI: 10.11902/1005.4537.2023.108
Current Issue | Archive | Adv Search |
Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin
LI Wenjie1, CHE Xiaoyu1, TANG Yongcun1, LIU Guangming2(), TIAN Wenming3, HE Hualin4, LIU Chenhui2
1.State Grid Tianjin Electric Power Company, Tianjin 300010, China
2.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
3.School of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
4.Chengdu Great Norga Science and Technology Co., Ltd., Chengdu 611330, China
Cite this article: 

LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 497-504.

Download:  HTML  PDF(15815KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pure zinc bars with different deformation degree were prepared by hot rolling. The effect of deformation degree on the microstructure and corrosion properties of pure zinc in a leaching solution of soil at Tianjin were studied by electrochemical test, immersion accelerating corrosion test and metallographic characterization. The results showed that the cast pure zinc had a coarse microstructure with a large number of fine sub-grains and casting twins. The primary grains of zinc were obviously refined, while the sub-grains were merged and grown with the increase of plastic deformation degree. The cast twins were significantly reduced as the deformation degree increased. The pitting potential and passivation interval of pure zinc in the soil leaching solution increased with the increase of deformation degree. While the corrosion current density and passivation current density decreased as the deformation degree increased. The resistance of passive film and the charge transfer resistance of corrosion process of zinc obviously increased after plastic deformation treatment. The continuously improved metallographic homogeneity of pure zinc, which resulted from the increased plastic deformation degree could enhance the corrosion resistance of pure zinc in the soil leaching solution.

Key words:  pure zinc      plastic processing      metallographic structure      electrochemistry      soil corrosion     
Received:  13 April 2023      32134.14.1005.4537.2023.108
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51961028)
Corresponding Authors:  LIU Guangming, E-mail: gemliu@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.108     OR     https://www.jcscp.org/EN/Y2024/V44/I2/497

Fig.1  Low-magnification dark field metallographs (a, c, e, g) and high-magnification bright field metallographs (b, d, f, h) of 1# (a, b), 2# (c, d), 3# (e, f) and 4# (g, h) pure zinc samples treated at different deformation degrees
Fig.2  Size distributions of the grains/sub-grains of 1# zinc wire (a), 2# cast zinc (b), 3# zinc rod (c) and 4# zinc rod (d) treated at different deformation degrees
Fig.3  OCP curves of 1#-4# pure zinc samples treated at different deformation degrees
Fig.4  Potential dynamic polarization curves of 1#-4# pure zinc samples treated at different deformation degrees

Numbering

of zinc

Ecorr

mVSCE

ba

mV/dec

-bc

mV/dec

Icorr

μA/cm2

Epit

mVSCE

Ipass

μA/cm2

1#-1078 ± 19415 ± 105174 ± 229.25 ± 1.38-869 ± 7311.25 ± 1.49
2#-1087 ± 23557 ± 133193 ± 314.96 ± 0.97-818 ± 625.32 ± 0.88
3#-1082 ± 18726 ± 189188 ± 254.18 ± 0.89-635 ± 594.78 ± 0.82
4#-1088 ± 17806 ± 177196 ± 352.14 ± 0.68-537 ± 512.77 ± 0.73
Table 1  Tafel fitting results of potentiodynamic polarization curves of 1#~4# pure zinc samples treated at different deformation degrees
Fig.5  Nyquist (a) and Bode (b) plots of 1#-4# pure zinc samples treated at different deformation degrees
Fig.6  Equivalent circuit used to fit EIS
Numbering of zinc1#2#3#4#
Rhf / Ω·cm23105 ± 5835796 ± 86510893 ± 163417680 ± 1993
Rct / Ω·cm22070 ± 4137645 ± 9098546 ± 11929827 ± 1336
Table2  Fitting values of Rhf and Rct
Fig.7  Corrosion morphologies of 1# (a), 2# (b), 3# (c) and 4# (d) pure zinc samples after 30 d immersion in soil leaching solution
1 Liu L B, Kang Y L, Song R B, et al. Corrosion behavior of 1000 MPa grade ultra-high strength hot-dip galvanized steel sheets[J]. Corros. Prot., 2019, 40: 723
刘李斌, 康永林, 宋仁伯 等. 1000 MPa级超高强度热镀锌钢板耐腐蚀性能[J]. 腐蚀与防护, 2019, 40: 723
2 Yin J X, Wang X, Ge F, et al. Effects of NH4+ and NO3- on corrosion behavior of pure zinc in NaCl solution[J]. Trans. Mater. Heat Treat., 2020, 41(3): 82
殷佳璇, 王 昕, 葛 峰 等. NH4+和NO3-对纯锌在NaCl溶液中腐蚀行为的影响[J]. 材料热处理学报, 2020, 41(3): 82
doi: 10.13289/j.issn.1009-6264.2019-0412
3 Wu H C, Chen G X, Yu H T, et al. Characterization of microstructure of deformation twin boundary in zinc by transmission electron microscopy[J]. Anal. Test. Technol. Instrum., 2022, 28: 247
吴海辰, 陈国新, 于海涛 等. 纯锌中变形孪晶界精细结构的透射电子显微镜表征[J]. 分析测试技术与仪器, 2022, 28: 247
4 Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43: 191
doi: 10.11902/1005.4537.2022.061
5 Ji P, Yu C M, Huang W, et al. Analysis of corrosion resistance on Hot-Dip Pure Zinc Coating, Zn-Fe alloy coating and zinc-aluminum-magnesium coating[J]. Mater. Prot., 2022, 55(2): 95
冀 鹏, 于春满, 黄 伟 等. 热镀纯锌、锌铁合金及锌铝镁镀层的耐蚀性分析[J]. 材料保护, 2022, 55(2): 95
6 Yuan C, Li H X, Feng T T, et al. Investigations on the corrosion properties of uncoated, Al-Si coated and hot-dip pure zinc coated hot-stamped steel plates[J]. Mater. Prot., 2022, 55(3): 14
袁 超, 李华鑫, 冯婷婷 等. 热成型钢板、铝硅镀层钢板和热镀纯锌镀层钢板的耐蚀性研究[J]. 材料保护, 2022, 55(3): 14
7 Wang Y, Guo C, Kong D C, et al. Microstructures and corrosion failure analysis of zinc anode[J]. Powder Metall. Technol., 2018, 36: 348
王 琰, 郭 淳, 孔德成 等. 锌阳极的微观组织和腐蚀失效分析[J]. 粉末冶金技术, 2018, 36: 348
8 Cao R H. Preparation, microstructure and properties of zinc based alloys for medical use[D]. Nanjing: Southeast University, 2018
曹瑞桦. 医用锌基合金制备、组织与性能研究[D]. 南京: 东南大学, 2018
9 Tian W M, Tian W Q, Li Z L, et al. Growth dynamics of stable pitting corrosion on SS304 stainless steel and associated measurement of pit inner environment[J]. Trans. Mater. Heat Treat., 2021, 42(9): 119
田文明, 田文庆, 李忠磊 等. 304不锈钢稳态点蚀生长动力学及孔内环境测定[J]. 材料热处理学报, 2021, 42(9): 119
doi: 10.13289/j.issn.1009-6264.2021-0139
10 Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43: 435
doi: 10.11902/1005.4537.2022.098
11 Bednarczyk W, Kawałko J, Wątroba M, et al. Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion[J]. Mater. Sci. Eng., 2020, 776A: 139047
12 Mollaei N, Fatemi S M, Aboutalebi M R, et al. Dynamic recrystallization and deformation behavior of an extruded Zn-0.2 Mg biodegradable alloy[J]. J. Mater. Res. Technol., 2022, 19: 4969
doi: 10.1016/j.jmrt.2022.06.159
13 Zhang W Y, Zhang T, Zhu Z X, et al. Corrosion electrochemistry properties of thermally sprayed Zn-Cu-Ti coating in simulated ocean atmosphere[J]. J. Mater. Res. Technol., 2022, 21: 3235
doi: 10.1016/j.jmrt.2022.10.108
14 Malla A D, Sullivan J H, Penney D J, et al. Mechanistic study on the corrosion behaviour of Zinc and Zinc-Calcium alloys designed for enhanced metallic coatings in the presence of chloride and phosphate ions[J]. Corros. Sci., 2023, 213: 110956
doi: 10.1016/j.corsci.2022.110956
15 Hybasek V, Kubasek J, Capek J, et al. Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloys[J]. Corros. Sci., 2021, 187: 109520
doi: 10.1016/j.corsci.2021.109520
16 Luo W H, Wang H T, Yu L, et al. Effect of Zn content on the electrochemical properties of Al-Zn-In-Mg sacrificial anode alloy[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1071
罗维华, 王海涛, 于 林 等. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43: 1071
doi: 10.11902/1005.4537.2022.356
17 Ayoola A A, Durodola B M, Babalola R, et al. Corrosion inhibitive effects of calcium-modified zinc phosphate coating on A36 mild steel[J]. Results Eng., 2023, 17: 100880
doi: 10.1016/j.rineng.2023.100880
18 Oliveira J L, Skilbred A W B, Loken A, et al. Effect of accelerated ageing procedures and flash rust inhibitors on the anti-corrosive performance of epoxy coatings: EIS and dynamic-mechanical analysis[J]. Prog. Org. Coat., 2021, 159: 106387
19 Jain D, Pareek S, Agarwala A, et al. Effect of exposure time on corrosion behavior of zinc-alloy in simulated body fluid solution: Electrochemical and surface investigation[J]. J. Mater. Res. Technol., 2021, 10: 738
doi: 10.1016/j.jmrt.2020.12.050
[1] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[2] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[3] BIAN Yafei, TANG Wenming, ZHANG Jie, MAO Ruirui, MIAO Chunhui, CHEN Guohong. Soil Corrosion Characteristics of Q235 Steel Grounding Material Used in Power Grid in Anhui Province[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[4] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[5] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[6] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[7] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[8] GAO Yibin, DU Xiaogang, WANG Qiwei, ZHONG Liming, FU Wenhua, ZHANG Hanping, ZHANG Meng, JIANG Chunhai. Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(2): 435-440.
[9] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[10] FENG Li, ZHANG Shengtao, ZHENG Siyuan, HU Zhiyong, ZHU Hailin, MA Xuemei. Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
[11] ZHANG Haibing, ZHANG Yihan, MA Li, XING Shaohua, DUAN Tigang, YAN Yonggui. Electrochemical Performance of Sacrificial Anodes in Alternating Depth and Shallowness of Seawater Environments[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
[12] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[13] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[14] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[15] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
No Suggested Reading articles found!