|
|
Corrosion Area Identification of Sheet Metal Based on K-means++ Clustering Algorithm and SSIM Index |
LONG Mengxiang, FU Guicui, WAN Bo( ), ZHANG Zhongqing |
School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China |
|
Cite this article:
LONG Mengxiang, FU Guicui, WAN Bo, ZHANG Zhongqing. Corrosion Area Identification of Sheet Metal Based on K-means++ Clustering Algorithm and SSIM Index. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 437-444.
|
Abstract Various corrosion characteristics such as rust spots and cracks will appear on the surface of metal plates after corrosion. Their corrosion degree can be determined by corrosion characteristics. At present, the corrosion degree of metal plates is mainly judged by manual visual inspection. But it has many non-ignorable shortcomings such as low consistency and low efficiency etc. In this paper, the RGB values of image pixels of corroded metal sheets were collected and then clustered by means of K-means++ clustering algorithm, afterwards the relevant corroded- and uncorroded-regions were separated. Whether corrosion occurred or not was judged in each cluster area by means of image structural similarity index SSIM. The results show that setting the number of clustering centers ‘k’ to 5 can effectively delineate each clustering area based on the image color distribution. Compared to peak signal-to-noise ratio and mean square error, the structural similarity index SSIM is strongly correlated with the occurrence of erosion. Setting the SSIM index threshold at 0.95 can effectively judge whether erosion occurred in each cluster area. Compared to manually dividing corrosion areas based on pixel color, our method had a higher identification efficiency and an accuracy of not less than 90%. This research can be applied to automate the evaluation of the corrosion degree of metal sheets after environmental testing.
|
Received: 14 April 2023
32134.14.1005.4537.2023.112
|
|
Corresponding Authors:
WAN Bo, E-mail: wanbo@buaa.edu.cn
|
1 |
Cao X L. Investigation of atmospheric corrosivity with ACM technology[D]. Wuhan: Academy of Machinery Science & Technology, 2005
|
|
曹献龙. ACM技术研究大气环境腐蚀严酷性[D]. 武汉: 机械科学研究院, 2005
|
2 |
Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
|
|
徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展[J]. 中国腐蚀与防护学报, 2022, 42: 447
|
3 |
Uhlig H H. The cost of corrosion to the United States[J]. Corrosion, 1950, 6: 29
doi: 10.5006/0010-9312-6.1.29
|
4 |
Fei Y W, Peng B, Xiao Y P. Review on the development of digital processing technology for metal corrosion images[J]. Dig. Technol. Appl., 2010, (11): 45
|
|
费逸伟, 彭 彬, 校云鹏. 金属腐蚀图像数字处理技术发展综述[J]. 数字技术与应用, 2010, (11): 45
|
5 |
Wang M H, Wang H, Liu R, et al. Research on image recognition for NiCrAlY Coating/N5 high-temperature alloy system based on deep learning method[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 583
|
|
王明好, 王 欢, 刘 叡 等. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42: 583
doi: 10.11902/1005.4537.2021.234
|
6 |
Tan C, Sun Y, Li G F, et al. Image segmentation technology based on genetic algorithm[A]. Proceedings of the 2019 3rd International Conference on Digital Signal Processing[C]. Jeju Island, Republic of Korea, 2019: 27
|
7 |
Lei F, Xiong J B, Zhang L, et al. Image enhancement algorithm in metal corrosion area[J]. CAAI Trans. Intell. Syst., 2019, 14: 385
|
|
雷 芳, 熊建斌, 张 磊 等. 金属腐蚀区域图像增强算法研究[J]. 智能系统学报, 2019, 14: 385
|
8 |
Li Z H, Zhang L, Wang J M, et al. Research on image acquisition and preprocessing method for visual measurement of pipeline inner surface corrosion[A]. 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI)[C]. Yangzhou, China, 2017: 364
|
9 |
Zhu Z T, Mu Z T, Su W G, et al. Corrosion grade evaluation of aluminum alloy based on image processing technique[J]. J. Nanjing Univ. Aeronaut. Astronaut., 2010, 42: 383
|
|
朱做涛, 穆志韬, 苏维国 等. 基于图像处理技术的铝合金腐蚀等级评定方法[J]. 南京航空航天大学学报, 2010, 42: 383
|
10 |
Xu J, Luan Y H. Application of digital image processing technology in corrosion science[J]. Total Corros. Control, 2015, 29(1): 43
|
|
徐 健, 栾艳华. 数字图像处理技术在腐蚀科学中的应用研究[J]. 全面腐蚀控制, 2015, 29(1): 43
|
11 |
Nan C H. Research on corrosion mechanism and damage evaluation of ocean engineering materials based on image recognition[D]. Xi'an: Xi'an University of Technology, 2021
|
|
南翠红. 基于图像识别的海洋工程材料腐蚀机理及损伤评价研究[D]. 西安: 西安理工大学, 2021
|
12 |
Huang X B, Zhang X L, Zhang Y, et al. A method of identifying rust status of dampers based on image processing[J]. IEEE Trans. Instrum. Meas., 2020, 69: 5407
doi: 10.1109/TIM.19
|
13 |
Petricca L, Moss T, Figueroa G, et al. Corrosion detection using A. I: a comparison of standard computer vision techniques and deep learning model[A]. The Sixth International Conference on Computer Science, Engineering and Information Technology[C]. Viena, Austria, 2016
|
14 |
Zhou G Y, Zhang Z J, Yin W L, et al. Surface defect detection of CFRP materials based on infrared thermography and Attention U-Net algorithm[J]. Nondestruct. Test. Eval., doi: 10.1080/10589759.2023.2191954
|
15 |
Ibrahim A, Dalbah A, Abualsaud A, et al. Application of machine learning to evaluate insulator surface erosion[J]. IEEE Trans. Instrum. Meas., 2020, 69: 314
doi: 10.1109/TIM.19
|
16 |
Wang S S, Ma S J, Che K, et al. Application status of machine learning in field of natural environment corrosion assessment and prediction[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 441
|
|
王莎莎, 马帅杰, 车 琨 等. 机器学习在自然环境腐蚀评估与预测领域的应用现状[J]. 中国腐蚀与防护学报, 2023, 43: 441
doi: 10.11902/1005.4537.2022.147
|
17 |
Rahman A, Wu Z Y, Kalfarisi R. Semantic deep learning integrated with RGB feature-based rule optimization for facility surface corrosion detection and evaluation[J]. J. Comput. Civil Eng., 2021, 35: 4021018
doi: 10.1061/(ASCE)CP.1943-5487.0000982
|
18 |
MacQueen J. Classification and analysis of multivariate observations[A]. 5th Berkeley Symposium on Mathematical Statistics and Probability[C]. Los Angeles, USA, 1967: 281
|
19 |
Liu Y. Laryngoscope image classification by an improved convolutional neural network based on entropy weighted K-means clustering[D]. Changchun: Changchun University of Technology, 2022
|
|
刘 阳. 基于加权熵K-means聚类的改进卷积神经网络下喉镜图像分类研究[D]. 长春: 长春工业大学, 2022
|
20 |
Zhong J, Lin C, Sheng Z W, et al. Quantum K-means algorithm based on Hamming distance[J]. J. Comput. Appl., 2023, 43(8): 2493
|
|
钟 静, 林 晨, 盛志伟 等. 基于汉明距离的量子K-Means算法[J]. 计算机应用, 2023, 43(8): 2493
|
21 |
Arthur D, Vassilvitskii S. K-means++: The advantages of careful seeding[A]. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms[C]. New Orleans, USA, 2006
|
22 |
Thorndike R L. Who belongs in the family?[J]. Psychometrika, 1953, 18: 267
doi: 10.1007/BF02289263
|
23 |
Rousseeuw P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. J. Comput. Appl. Math., 1987, 20: 53
|
24 |
Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic[J]. J. R. Stat. Soc., 2001, 63B: 411
|
25 |
Sugar C A, James G M. Finding the number of clusters in a dataset: An information-theoretic approach[J]. J. Am. Stat. Assoc., 2003, 98: 750
doi: 10.1198/016214503000000666
|
26 |
Hirsch R. Exploring Colour Photography: A Complete Guide[M]. Berlin: Laurence King Publishing, 2005
|
27 |
Wang Z, Bovik A C. Mean squared error: Love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Process. Mag., 2009, 26: 98
|
28 |
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. Image Process., 2004, 13: 600
doi: 10.1109/TIP.2003.819861
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|