|
|
Corrosion Performance of Electrochemical Sensors for Atmospheric Environments |
LI Tingyu1,2, WEI Jie1( ), CHEN Nan1, WAN Ye2( ), DONG Junhua1 |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China |
|
Cite this article:
LI Tingyu, WEI Jie, CHEN Nan, WAN Ye, DONG Junhua. Corrosion Performance of Electrochemical Sensors for Atmospheric Environments. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 365-371.
|
Abstract An electrochemical sensor for monitoring atmospheric corrosion of metallic materials was constructed. Two metallic materials with different corrosion potentials, i.e. low alloy steel and copper conductive paint, were chosen to form the two electrodes of the sensor based on the principle of galvanic corrosion. The two electrodes are separated by a thin silicone insulating film, and thus an electrochemical corrosion system may be established by the two electrodes while which was covered by a thin liquid film came from the atmosphere, correspondingly, galvanic corrosion current is generated. This galvanic current is monitored to reflect the corrosion state of the material in the environment. A new type of electrochemical sensor was used to study the influence of factors such as insulation film thickness, liquid film thickness, temperature, relative humidity, and cathode to anode area ratio on the galvanic current with the assistance of an electrochemical workstation and a high-precision electronic balance. It is confirmed that the new electrochemical sensor has high sensitivity and can be used for monitoring the atmospheric corrosion process under thin liquid film.
|
Received: 23 May 2023
32134.14.1005.4537.2023.174
|
|
Fund: Major R&D project of Liaoning Provinceand National Science(2020JH1/10100001);Technology Resources Investigation Program of China(2019FY101401);Technology Resources Investigation Program of China(2019FY101402);CAS-NSTDA Joint Research Program(174321KYSB20210004) |
Corresponding Authors:
WEI Jie, E-mail: jwei@imr.ac.cn; WAN Ye,E-mail: ywan@sjzu.edu.cn
|
1 |
Grøntoft T, Verney-Carron A, Tidblad J. Cleaning costs for European sheltered white painted steel and modern glass surfaces due to air pollution since the year 2000[J]. Atmosphere, 2019, 10: 167
doi: 10.3390/atmos10040167
|
2 |
Zhao Y T, Ding H L, Qiu K N, et al. Research progress on influencing factors and test methods of atmospheric corrosion of metals[J]. J. Shanghai Univ. Electric Power, 2022, 38: 527
|
|
赵悦彤, 丁红蕾, 邱凯娜 等. 金属大气腐蚀影响因素及实验方法研究综述[J]. 上海电力大学学报, 2022, 38: 527
|
3 |
Xu J W. Research on key corrosion factors and synergistic mechanism of Q345 steel in South China Sea[D]. Chongqing: Chongqing Jiaotong University, 2020
|
|
徐静雯. Q345钢南海环境关键腐蚀因子及其协同作用机理研究[D]. 重庆: 重庆交通大学, 2020
|
4 |
Pan J Q, Wu D, Yu F Z, et al. Research and application of atmospheric corrosion monitoring sensor[J]. Corros. Prot., 2021, 42(4): 58
|
|
潘建乔, 吴 迪, 余方召 等. 大气腐蚀监测传感器的研究与应用[J]. 腐蚀与防护, 2021, 42(4): 58
|
5 |
Zeng J J, Zhou X J, Wu J, et al. Correlation and life prediction of atmospheric corrosion tests on metallic materials current research status[J]. Corros. Sci. Prot. Technol., 2015, 27: 90
|
|
曾佳俊, 周学杰, 吴 军 等. 金属材料大气腐蚀试验相关性与寿命预测研究现状[J]. 腐蚀科学与防护技术, 2015, 27: 90
doi: 10.11903/1002.6495.2014.104
|
6 |
Li X G, Li Q, Pei Z B, et al. Latest developments on atmospheric corrosion monitoring technologies for steels[J]. Ansteel Technol., 2020, (6): 1
|
|
李晓刚, 李 清, 裴梓博 等. 钢铁大气腐蚀监测技术研究进展[J]. 鞍钢技术, 2020, (6): 1
|
7 |
Dravnieks A, Cataldi H A. Industrial applications of a method for measuring small amounts of corrosion without removal of corrosion products[J]. Corrosion, 1954, 10: 224
doi: 10.5006/0010-9312-10.7.224
|
8 |
Freedman A J, Troscinski E S, Dravnieks A. An electrical resistance method of corrosion monitoring in refinery equipment[J]. Corrosion, 1958, 14(4): 29
|
9 |
Zhang W L, Feng D C, Dong L, et al. Numerical simulation of correlation between resistance change and corrosion degree of bar resistance probe[J]. Corros. Prot., 2020, 41(4): 54
|
|
张文亮, 冯大成, 董 亮 等. 条形电阻探针电阻变化与腐蚀程度相关性的数值模拟[J]. 腐蚀与防护, 2020, 41(4): 54
|
10 |
Zhou M X, Wu J, Fan Z B, et al. Current situation and prospect of on-line monitoring technology for atmospheric corrosion testing of metallic materials[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 38
|
|
周梦鑫, 吴 军, 樊志彬 等. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43: 38
doi: 10.11902/1005.4537.2022.027
|
11 |
Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan Province by atmospheric corrosion monitoring technique[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
|
|
王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41: 487
|
12 |
Yuan H Y, Ma C F, Liu G M, et al. Applications of quartz crystal microbalance in polymer studies[J]. Acta Polym. Sin., 2021, 52: 806
|
|
袁海洋, 马春风, 刘光明 等. 石英晶体微天平在高分子研究中的应用[J]. 高分子学报, 2021, 52: 806
|
13 |
Zhang Z Z. A review on study state and progress of metal-corrosion electrochemical-noise measurement[J]. China Met. Bull., 2021, (9): 182
|
|
张中正. 金属腐蚀电化学噪声测量法的研究与进展[J]. 中国金属通报, 2021, (9): 182
|
14 |
Zhao J, Zhang B S. Study on corrosion detection method of bridge steel structure in air pollution environment[J]. Build. Technol. Dev., 2020, 47(18): 138
|
|
赵 健, 张保胜. 大气污染环境下桥梁钢结构腐蚀检测方法研究[J]. 建筑技术开发, 2020, 47(18): 138
|
15 |
Palani S, Hack T, Deconinck J, et al. Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination[J]. Corros. Sci., 2014, 78: 89
doi: 10.1016/j.corsci.2013.09.003
|
16 |
Bellucci F. Galvanic corrosion between nonmetallic composites and metals: I effect of metal and of temperature[J]. Corrosion, 1991, 47: 808
doi: 10.5006/1.3585192
|
17 |
Zhao H L. Galvanic corrosion research of production tubing, production casing and packer materials in packer fluid[D]. Chengdu: Sichuan University, 2007
|
|
赵华莱. 油套管及封隔器用钢在封隔液环境下的电偶腐蚀行为研究[D]. 成都: 四川大学, 2007
|
18 |
Zhang W Y. Progress in research on galvanic corrosion behavior and protection[J]. Total Corros. Control, 2018, 32(12): 51
|
|
张文毓. 电偶腐蚀与防护的研究进展[J]. 全面腐蚀控制, 2018, 32(12): 51
|
19 |
Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
|
|
刘艳洁, 王振尧, 王彬彬 等. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37: 261
doi: 10.11902/1005.4537.2016.038
|
20 |
Lu Y L, Du Y, Wang C, et al. Effect of nano-Al2O3 and -TiO2 modified silicone coatings on high temperature oxidation Resistance of 304 stainless steel[J]. Chin. J. Mater. Res., 2021, 35: 458
|
|
卢壹梁, 杜 瑶, 王成 等. 纳米Al2O3和TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35: 458
doi: 10.11901/1005.3093.2020.258
|
21 |
Yao X, Cai C, Li J F, et al. Early stage galvanic corrosion of 5383 Al alloy coupled with 907 steel and aluminum bronze in 3.5%NaCl Solution[J]. Corros. Sci. Prot. Technol., 2015, 27: 419
|
|
姚 希, 蔡 超, 李劲风 等. 5383铝合金与907钢和铝青铜早期电偶腐蚀的平面分布[J]. 腐蚀科学与防护技术, 2015, 27: 419
|
22 |
Fu X X, Dong J H, Han E H, et al. Electrochemical impedance spectroscopy monitoring on mild steel Q235 in simulated industrial atmospheric corrosion environment[J]. Acta Metall. Sin., 2014, 50: 57
|
|
傅欣欣, 董俊华, 韩恩厚 等. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测[J]. 金属学报, 2014, 50: 57
doi: 10.3724/SP.J.1037.2013.00278
|
23 |
Xiong X L, Wang Y Y, Li T, et al. Research progress of the galvanic corrosion between carbon fiber reinforced resin matrix composites and typical metal connections[J]. Mater. Prot., 2022, 55(7): 187
|
|
熊先炼, 王莹莹, 李 湉 等. 碳纤维增强树脂基复合材料与金属典型连接件电偶腐蚀的研究进展[J]. 材料保护, 2022, 55(7): 187
|
24 |
Cao X L, Xiao Y D, Lu Y, et al. Research of environmental sensitivity of Cu/Fe galvanic cell[J]. Equip. Environ. Eng., 2006, 3(4): 20
|
|
曹献龙, 萧以德, 卢 颖 等. Cu/Fe双电极原电池对环境敏感性的研究[J]. 装备环境工程, 2006, 3(4): 20
|
25 |
Huang Y L, Yang D, Xu Y, et al. Field study of weather conditions affecting atmospheric corrosion by an automobile-carried atmospheric corrosion monitor sensor[J]. J. Mater. Eng. Perform., 2020, 29: 5840
doi: 10.1007/s11665-020-05107-y
|
26 |
Xu Q, Liu Y P, Hu P F, et al. Analysis of galvanic corrosion behavior of stainless steel and hull steel in seawater[J]. Equip. Environ. Eng., 2022, 19(5): 126
|
|
徐 强, 刘亚鹏, 胡鹏飞 等. 不锈钢与船体钢在海水中的电偶腐蚀行为研究[J]. 装备环境工程, 2022, 19(5): 126
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|