Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 365-371    DOI: 10.11902/1005.4537.2023.174
Current Issue | Archive | Adv Search |
Corrosion Performance of Electrochemical Sensors for Atmospheric Environments
LI Tingyu1,2, WEI Jie1(), CHEN Nan1, WAN Ye2(), DONG Junhua1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Cite this article: 

LI Tingyu, WEI Jie, CHEN Nan, WAN Ye, DONG Junhua. Corrosion Performance of Electrochemical Sensors for Atmospheric Environments. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 365-371.

Download:  HTML  PDF(4997KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An electrochemical sensor for monitoring atmospheric corrosion of metallic materials was constructed. Two metallic materials with different corrosion potentials, i.e. low alloy steel and copper conductive paint, were chosen to form the two electrodes of the sensor based on the principle of galvanic corrosion. The two electrodes are separated by a thin silicone insulating film, and thus an electrochemical corrosion system may be established by the two electrodes while which was covered by a thin liquid film came from the atmosphere, correspondingly, galvanic corrosion current is generated. This galvanic current is monitored to reflect the corrosion state of the material in the environment. A new type of electrochemical sensor was used to study the influence of factors such as insulation film thickness, liquid film thickness, temperature, relative humidity, and cathode to anode area ratio on the galvanic current with the assistance of an electrochemical workstation and a high-precision electronic balance. It is confirmed that the new electrochemical sensor has high sensitivity and can be used for monitoring the atmospheric corrosion process under thin liquid film.

Key words:  atmospheric corrosion      sensor      real-time monitoring      galvanic current     
Received:  23 May 2023      32134.14.1005.4537.2023.174
ZTFLH:  TG172.3  
Fund: Major R&D project of Liaoning Provinceand National Science(2020JH1/10100001);Technology Resources Investigation Program of China(2019FY101401);Technology Resources Investigation Program of China(2019FY101402);CAS-NSTDA Joint Research Program(174321KYSB20210004)
Corresponding Authors:  WEI Jie, E-mail: jwei@imr.ac.cn;
WAN Ye,E-mail: ywan@sjzu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.174     OR     https://www.jcscp.org/EN/Y2024/V44/I2/365

Fig.1  Diagram of the sensor: (a) top view, (b) side view
Fig.2  Surface morphology (a) and cross-sectional morphology (b) of the silicone coating
Fig.3  Surface morphology (a) and cross-sectional morphology (b) of the copper coating
Fig.4  Variations of galvanic current with corrosion time for coupled specimens with different spacings
Fig.5  Variation of electrolyte film thickness with corrosion time
Fig.6  Sensor monitored galvanic current vs. time curve
Fig.7  Effect of temperature on galvanic current of sensor at different relative humidities
Fig.8  Effect of relative humidity on sensor corrosion current at different temperatures
Fig.9  Variation curves of galvanic current (a) and galvanic potential (b) of the sensor with corrosion time at different ratios of cathode area and anode area
1 Grøntoft T, Verney-Carron A, Tidblad J. Cleaning costs for European sheltered white painted steel and modern glass surfaces due to air pollution since the year 2000[J]. Atmosphere, 2019, 10: 167
doi: 10.3390/atmos10040167
2 Zhao Y T, Ding H L, Qiu K N, et al. Research progress on influencing factors and test methods of atmospheric corrosion of metals[J]. J. Shanghai Univ. Electric Power, 2022, 38: 527
赵悦彤, 丁红蕾, 邱凯娜 等. 金属大气腐蚀影响因素及实验方法研究综述[J]. 上海电力大学学报, 2022, 38: 527
3 Xu J W. Research on key corrosion factors and synergistic mechanism of Q345 steel in South China Sea[D]. Chongqing: Chongqing Jiaotong University, 2020
徐静雯. Q345钢南海环境关键腐蚀因子及其协同作用机理研究[D]. 重庆: 重庆交通大学, 2020
4 Pan J Q, Wu D, Yu F Z, et al. Research and application of atmospheric corrosion monitoring sensor[J]. Corros. Prot., 2021, 42(4): 58
潘建乔, 吴 迪, 余方召 等. 大气腐蚀监测传感器的研究与应用[J]. 腐蚀与防护, 2021, 42(4): 58
5 Zeng J J, Zhou X J, Wu J, et al. Correlation and life prediction of atmospheric corrosion tests on metallic materials current research status[J]. Corros. Sci. Prot. Technol., 2015, 27: 90
曾佳俊, 周学杰, 吴 军 等. 金属材料大气腐蚀试验相关性与寿命预测研究现状[J]. 腐蚀科学与防护技术, 2015, 27: 90
doi: 10.11903/1002.6495.2014.104
6 Li X G, Li Q, Pei Z B, et al. Latest developments on atmospheric corrosion monitoring technologies for steels[J]. Ansteel Technol., 2020, (6): 1
李晓刚, 李 清, 裴梓博 等. 钢铁大气腐蚀监测技术研究进展[J]. 鞍钢技术, 2020, (6): 1
7 Dravnieks A, Cataldi H A. Industrial applications of a method for measuring small amounts of corrosion without removal of corrosion products[J]. Corrosion, 1954, 10: 224
doi: 10.5006/0010-9312-10.7.224
8 Freedman A J, Troscinski E S, Dravnieks A. An electrical resistance method of corrosion monitoring in refinery equipment[J]. Corrosion, 1958, 14(4): 29
9 Zhang W L, Feng D C, Dong L, et al. Numerical simulation of correlation between resistance change and corrosion degree of bar resistance probe[J]. Corros. Prot., 2020, 41(4): 54
张文亮, 冯大成, 董 亮 等. 条形电阻探针电阻变化与腐蚀程度相关性的数值模拟[J]. 腐蚀与防护, 2020, 41(4): 54
10 Zhou M X, Wu J, Fan Z B, et al. Current situation and prospect of on-line monitoring technology for atmospheric corrosion testing of metallic materials[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 38
周梦鑫, 吴 军, 樊志彬 等. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43: 38
doi: 10.11902/1005.4537.2022.027
11 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan Province by atmospheric corrosion monitoring technique[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41: 487
12 Yuan H Y, Ma C F, Liu G M, et al. Applications of quartz crystal microbalance in polymer studies[J]. Acta Polym. Sin., 2021, 52: 806
袁海洋, 马春风, 刘光明 等. 石英晶体微天平在高分子研究中的应用[J]. 高分子学报, 2021, 52: 806
13 Zhang Z Z. A review on study state and progress of metal-corrosion electrochemical-noise measurement[J]. China Met. Bull., 2021, (9): 182
张中正. 金属腐蚀电化学噪声测量法的研究与进展[J]. 中国金属通报, 2021, (9): 182
14 Zhao J, Zhang B S. Study on corrosion detection method of bridge steel structure in air pollution environment[J]. Build. Technol. Dev., 2020, 47(18): 138
赵 健, 张保胜. 大气污染环境下桥梁钢结构腐蚀检测方法研究[J]. 建筑技术开发, 2020, 47(18): 138
15 Palani S, Hack T, Deconinck J, et al. Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination[J]. Corros. Sci., 2014, 78: 89
doi: 10.1016/j.corsci.2013.09.003
16 Bellucci F. Galvanic corrosion between nonmetallic composites and metals: I effect of metal and of temperature[J]. Corrosion, 1991, 47: 808
doi: 10.5006/1.3585192
17 Zhao H L. Galvanic corrosion research of production tubing, production casing and packer materials in packer fluid[D]. Chengdu: Sichuan University, 2007
赵华莱. 油套管及封隔器用钢在封隔液环境下的电偶腐蚀行为研究[D]. 成都: 四川大学, 2007
18 Zhang W Y. Progress in research on galvanic corrosion behavior and protection[J]. Total Corros. Control, 2018, 32(12): 51
张文毓. 电偶腐蚀与防护的研究进展[J]. 全面腐蚀控制, 2018, 32(12): 51
19 Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
刘艳洁, 王振尧, 王彬彬 等. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37: 261
doi: 10.11902/1005.4537.2016.038
20 Lu Y L, Du Y, Wang C, et al. Effect of nano-Al2O3 and -TiO2 modified silicone coatings on high temperature oxidation Resistance of 304 stainless steel[J]. Chin. J. Mater. Res., 2021, 35: 458
卢壹梁, 杜 瑶, 王成 等. 纳米Al2O3和TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35: 458
doi: 10.11901/1005.3093.2020.258
21 Yao X, Cai C, Li J F, et al. Early stage galvanic corrosion of 5383 Al alloy coupled with 907 steel and aluminum bronze in 3.5%NaCl Solution[J]. Corros. Sci. Prot. Technol., 2015, 27: 419
姚 希, 蔡 超, 李劲风 等. 5383铝合金与907钢和铝青铜早期电偶腐蚀的平面分布[J]. 腐蚀科学与防护技术, 2015, 27: 419
22 Fu X X, Dong J H, Han E H, et al. Electrochemical impedance spectroscopy monitoring on mild steel Q235 in simulated industrial atmospheric corrosion environment[J]. Acta Metall. Sin., 2014, 50: 57
傅欣欣, 董俊华, 韩恩厚 等. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测[J]. 金属学报, 2014, 50: 57
doi: 10.3724/SP.J.1037.2013.00278
23 Xiong X L, Wang Y Y, Li T, et al. Research progress of the galvanic corrosion between carbon fiber reinforced resin matrix composites and typical metal connections[J]. Mater. Prot., 2022, 55(7): 187
熊先炼, 王莹莹, 李 湉 等. 碳纤维增强树脂基复合材料与金属典型连接件电偶腐蚀的研究进展[J]. 材料保护, 2022, 55(7): 187
24 Cao X L, Xiao Y D, Lu Y, et al. Research of environmental sensitivity of Cu/Fe galvanic cell[J]. Equip. Environ. Eng., 2006, 3(4): 20
曹献龙, 萧以德, 卢 颖 等. Cu/Fe双电极原电池对环境敏感性的研究[J]. 装备环境工程, 2006, 3(4): 20
25 Huang Y L, Yang D, Xu Y, et al. Field study of weather conditions affecting atmospheric corrosion by an automobile-carried atmospheric corrosion monitor sensor[J]. J. Mater. Eng. Perform., 2020, 29: 5840
doi: 10.1007/s11665-020-05107-y
26 Xu Q, Liu Y P, Hu P F, et al. Analysis of galvanic corrosion behavior of stainless steel and hull steel in seawater[J]. Equip. Environ. Eng., 2022, 19(5): 126
徐 强, 刘亚鹏, 胡鹏飞 等. 不锈钢与船体钢在海水中的电偶腐蚀行为研究[J]. 装备环境工程, 2022, 19(5): 126
[1] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[2] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[4] WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[5] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[6] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[7] LI Lemin, ZHANG Jie, BIAN Yafei, MIAO Chunhui, CHEN Guohong, TANG Wenming. Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[8] ZHOU Mengxin, WU Jun, FAN Zhibin, ZHOU Xuejie, CHEN Hao. Current Situation and Prospect of On-line Monitoring Technology for Atmospheric Corrosion Testing of Metallic Materials[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[9] FAN Zhibin, LI Xingeng, WANG Xiaoming, WANG Qian. Review of Regional Atmospheric Corrosion Mapping Technologys[J]. 中国腐蚀与防护学报, 2023, 43(1): 29-37.
[10] XIA Xiaojian, WAN Xinyuan, GAO Yan, WANG Qiwei, YAN Kanghua, CHEN Yunxiang, HONG Yicheng, ZHANG Junxi. Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[11] FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[12] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[13] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[14] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[15] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
No Suggested Reading articles found!