|
|
Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy |
HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui( ) |
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China |
|
|
Abstract The superhydrophobic surface has excellent water repellency, which helps to enhance the corrosion protection performance of the coating. In this work, a superhydrophobic and corrosion-resistant nickel-based composite coating was prepared on the surface of AZ31 Mg-alloy by combining chemical deposition and electrodeposition techniques with dynamic hydrogen bubbles as a template. The microscopic morphology, structure, composition, wettability, and corrosion protection performance of the coating were characterized using scanning electron microscopy (SEM), energy spectrometry (EDS), X-ray diffractometer (XRD), Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), optical contact angle meter and electrochemical workstation. It was found that adding ZnO nanoparticles to the electrodeposition bath may change the surface morphology of the porous nickel layer and affect its hydrophobicity. The static water contact angle (WCA) tests revealed that the highest WCA value of 160.8°±2.8° was acquired for the composite coating prepared by electrodeposition in the electrolyte containing ZnO nanoparticles of 5.0 g·L-1 and then modified by stearic acid. Compared to the bare Mg-alloy, the composite coating's corrosion potential was positively shifted by -1.23 V to -0.32 V. The corrosion current density and charge transfer resistance were reduced and increased by more than two orders of magnitude, reaching 8.41 10-7 A·cm-2 and 72.79 kΩ·cm2 respectively, indicating the good corrosion protection ability of the composite coating to the Mg-alloy.
|
Received: 09 May 2023
32134.14.1005.4537.2023.143
|
|
Fund: National Natural Science Foundation of China(52271073) |
Corresponding Authors:
XIE Zhi-Hui, E-mail: zhxie@cwnu.edu.cn
|
1 |
Dai W L, Wang J H, Luo S, et al. Fabrication of super-hydrophobic surface on AM60 Mg-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 301
|
|
代卫丽, 王景行, 罗 帅 等. AM60镁合金超疏水表面制备及防腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 301
doi: 10.11902/1005.4537.2021.088
|
2 |
Hu T, Ouyang Y J, Xie Z H, et al. One-pot scalable in situ growth of highly corrosion-resistant MgAl-LDH/MBT composite coating on magnesium alloy under mild conditions [J]. J. Mater. Sci. Technol., 2021, 92: 225
doi: 10.1016/j.jmst.2021.03.021
|
3 |
Ouyang Y J, Hu T, Wang J Y, et al. Electrochemical deposition and characterization of layered double hydroxide film on magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 453
|
|
欧阳跃军, 胡 婷, 王佳音 等. 镁合金表面层状双氢氧化物的电化学沉积和表征 [J]. 中国腐蚀与防护学报, 2019, 39: 453
doi: 10.11902/1005.4537.2019.178
|
4 |
Yang G L, Ouyang Y J, Xie Z H, et al. Nickel interlayer enables indirect corrosion protection of magnesium alloy by photoelectrochemical cathodic protection [J]. Appl. Surf. Sci., 2021, 558: 149840
doi: 10.1016/j.apsusc.2021.149840
|
5 |
Liu L, Zhang X F, Lei J L, et al. Self-cleaning and self-healing protective coating on magnesium alloy [J]. Surf. Technol., 2019, 48 (3) : 27
|
|
刘 雷, 张新芳, 雷惊雷 等. 镁合金表面自清洁、自修复防护膜研究 [J]. 表面技术, 2019, 48(3) : 27
|
6 |
Seifzadeh D, Kazemi Mohsenabadi H, Rajabalizadeh Z, Electroless Ni-P plating on magnesium alloy by innovative, simple and non-toxic oxalate pretreatment and its corrosion protection [J]. RSC Adv., 2016, 6: 97241
doi: 10.1039/C6RA19984D
|
7 |
Shoghi P, Seifzadeh D, Gholizadeh-Gheshlaghi M, et al. Pretreatment-free Ni-P plating on magnesium alloy at low temperatures [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 2478
doi: 10.1016/S1003-6326(18)64894-0
|
8 |
Cai Y R, Wang X D, Liu J J, et al. Electroless Ni-Cu-P/Ni-P composite coatings on magnesium alloys and anti-corrosion mechanisms [J]. Surf. Technol., 2019, 48(3): 47
|
|
蔡毅仁, 王旭东, 刘俊珺 等. 镁合金化学镀Ni-Cu-P/Ni-P复合镀层及腐蚀防护机理研究 [J]. 表面技术, 2019, 48(3): 47
|
9 |
Li Y Q, Ouyang Y J, Fang R, et al. A nickel-underlayer/LDH-midlayer/siloxane-toplayer composite coating for inhibiting galvanic corrosion between Ni layer and Mg alloy [J]. Chem. Eng. J., 2022, 430: 132776
doi: 10.1016/j.cej.2021.132776
|
10 |
Yao W H, Wu L, Huang G S, et al. Superhydrophobic coatings for corrosion protection of magnesium alloys [J]. J. Mater. Sci. Technol., 2020, 52: 100
doi: 10.1016/j.jmst.2020.02.055
|
11 |
Huang W, Huang J X, Guo Z G, et al. Icephobic/anti-icing properties of superhydrophobic surfaces [J]. Adv. Colloid Interface Sci., 2022, 304: 102658
doi: 10.1016/j.cis.2022.102658
|
12 |
Xia T, He X Q, Zhang Q X, et al. Simple and rapid fabrication and properties of superhydrophobic coatings on the surface [J]. Surf. Technol., 2022, 51(10): 328
|
|
夏 天, 何秀权, 章桥新 等. 简易快速的表面超疏水涂层制备及其性能 [J]. 表面技术, 2022, 51(10): 328
|
13 |
Fang R, Liu R J, Xie Z H, et al. Corrosion-resistant and superhydrophobic nickel-phosphorus/nickel/PFDTMS triple-layer coating on magnesium alloy [J]. Surf. Coat. Technol., 2022, 432: 128054
doi: 10.1016/j.surfcoat.2021.128054
|
14 |
Ntelia E, Karapanagiotis I. Superhydrophobic paraloid B72 [J]. Prog. Org. Coat., 2020, 139: 105224
|
15 |
Zhou Z Y, Ma B Y, Zhang X, et al. Enhanced corrosion resistance and self-cleaning properties of superhydrophobic nickel coating fabricated by one-step electrodeposition [J]. Ceram. Int., 2023, 49: 13109
doi: 10.1016/j.ceramint.2022.12.188
|
16 |
Wang Z H, Li Y C, Zhang G J. Hydrogen bubble-templated electrodeposition of superhydrophobic Zn-Ni films [J]. New J. Chem., 2023, 47: 844
doi: 10.1039/D2NJ05478G
|
17 |
Ma F L, Shen L L, Zeng Z X. Fabricating a slippery porous nickel coating based on the hydrogen bubble template method for corrosion protection with self-healing property [J]. Surf. Topogr.: Metrol. Prop., 2022, 10: 045004
|
18 |
Comisso N, Armelao L, Cattarin S, et al. Porous oxide electrocatalysts for oxygen evolution reaction prepared through a combination of hydrogen bubble templated deposition, oxidation and galvanic displacement steps [J]. Electrochim. Acta, 2018, 273: 454
doi: 10.1016/j.electacta.2018.04.069
|
19 |
Park Y S, Choi W S, Jang M J, et al. Three-dimensional dendritic Cu-Co-P electrode by one-step electrodeposition on a hydrogen bubble template for hydrogen evolution reaction [J]. ACS Sustainable Chem. Eng., 2019, 7: 10734
doi: 10.1021/acssuschemeng.9b01426
|
20 |
Reda Y, Abdel-Karim R, Zohdy K M, et al. Electrochemical behavior of Ni-Cu foams fabricated by dynamic hydrogen bubble template electrodeposition used for energy applications [J]. Ain Shams Eng. J., 2022, 13: 101532
doi: 10.1016/j.asej.2021.06.018
|
21 |
Liu B, Yan S M, He Y, et al. Research for electrodeposited superhydrophobic Ni-W-WS2 coating and its anticorrosion and wear resistance [J]. Colloids Surf. A, 2022, 655: 130236
doi: 10.1016/j.colsurfa.2022.130236
|
22 |
Salehi M, Mozammel M, Emarati S M. Superhydrophobic and corrosion resistant properties of electrodeposited Ni-TiO2/TMPSi nanocomposite coating [J]. Colloids Surf. A, 2019, 573: 196
doi: 10.1016/j.colsurfa.2019.04.024
|
23 |
Yan Q Q, Zhou S G, Li Q F, et al. Superhydrophobic surface by SiO2 particle modified SiO2-Ni/a-C: H film deposition and superior corrosion protection [J]. Surf. Topogr.: Metrol. Prop., 2019, 7: 014003
|
24 |
Huang Z F, Yong Q W, Xie Z H. Stearic acid modified porous nickel-based coating on magnesium alloy AZ31 for high superhydrophobicity and corrosion resistance [J]. Corros. Commun., 2023, 10: 38
doi: 10.1016/j.corcom.2022.09.002
|
25 |
Wang S Y, Hou C, Wu M X, et al. Effect of choline chloride on electrodeposited superhydrophobic nickel film and the corrosion protection application [J]. Colloids Surf. A, 2021, 614: 126185
doi: 10.1016/j.colsurfa.2021.126185
|
26 |
Movahedi T, Norouzbeigi R. Synthesis of flower-like micro/nano ZnO superhydrophobic surfaces: additive effect optimization via designed experiments [J]. J. Alloy. Compd., 2019, 795: 483
doi: 10.1016/j.jallcom.2019.04.343
|
27 |
Feng Y C, Chen S G, Cheng Y F, Stearic acid modified zinc nano-coatings with superhydrophobicity and enhanced antifouling performance [J]. Surf. Coat. Technol., 2018, 340: 55
doi: 10.1016/j.surfcoat.2018.02.053
|
28 |
Mohamed M E, Ezzat A, Abdel-Gaber A M. Fabrication of eco-friendly graphene-based superhydrophobic coating on steel substrate and its corrosion resistance, chemical and mechanical stability [J]. Sci. Rep., 2022, 12: 10530
doi: 10.1038/s41598-022-14353-0
pmid: 35732683
|
29 |
Bai H, Zhang L, Gu D. Calcium stearate nanoparticles as building blocks for mechanically durable superhydrophobic coatings [J]. Mater. Chem. Phys., 2023, 294: 127040
doi: 10.1016/j.matchemphys.2022.127040
|
30 |
Feng Z B, Ren L L, Zhang J Q, et al. Effect of additives on the corrosion mechanism of nanocrystalline zinc-nickel alloys in an alkaline bath [J]. RSC Adv., 2016, 6: 88469
doi: 10.1039/C6RA18476F
|
31 |
Ouyang Y J, Huang Z F, Fang R, et al. Silica nanoparticles enhanced polysiloxane-modified nickel-based coatings on Mg alloy for robust superhydrophobicity and high corrosion resistance [J]. Surf. Coat. Technol., 2022, 450: 128995
doi: 10.1016/j.surfcoat.2022.128995
|
32 |
Hussain M M, Kunwar A, Majeed M K, et al. Superhydrophobic surface and lubricant-infused surface: implementing two extremes on electrodeposited Ni-TiO2 surface to drive optimal wettability regimes for droplets' multifunctional behaviors [J]. Adv. Eng. Mater., 2021, 23: 2100266
doi: 10.1002/adem.v23.10
|
33 |
Kuld S, Conradsen C, Moses P G, et al. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst [J]. Angew. Chem., 2014, 126: 6051
doi: 10.1002/ange.201311073
|
34 |
Li R Q, Gao Q H, Dong Q J, et al. Template-free electrodeposition of ultra-high adhesive superhydrophobic Zn/Zn stearate coating with ordered hierarchical structure from deep eutectic solvent [J]. Surf. Coat. Technol., 2020, 403: 126267
doi: 10.1016/j.surfcoat.2020.126267
|
35 |
Morales C, del Campo A, Méndez J, et al. Re-oxidation of ZnO clusters grown on HOPG [J]. Coatings, 2020, 10: 401
doi: 10.3390/coatings10040401
|
36 |
Feliu Jr S, Barranco V. XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn-Al alloy coatings on steel [J]. Acta Mater., 2003, 51: 5413
doi: 10.1016/S1359-6454(03)00408-7
|
37 |
Zhang X, Ding B, Bian Y F, et al. Synthesis of superhydrophobic surfaces with Wenzel and Cassie-Baxter state: experimental evidence and theoretical insight [J]. Nanotechnology, 2018, 29: 485601
doi: 10.1088/1361-6528/aae187
|
38 |
Lou C, Zhang R, Lu X, et al. Facile fabrication of epoxy/polybenzoxazine based superhydrophobic coating with enhanced corrosion resistance and high thermal stability [J]. Colloids Surf. A, 2019, 562: 8
doi: 10.1016/j.colsurfa.2018.10.066
|
39 |
Wang P, Zhang D, Qiu R, et al. Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium [J]. Corros. Sci., 2014, 83: 317
doi: 10.1016/j.corsci.2014.02.028
|
40 |
Li L X, Xie Z H, Fernandez C, et al. Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection [J]. Electrochim. Acta, 2020, 330: 135186
doi: 10.1016/j.electacta.2019.135186
|
41 |
Xu L, Yang X N, Fu X, et al. Fluorinated epoxy based superhydrophobic coating with robust self-healing and anticorrosive performances [J]. Prog. Org. Coat., 2022, 171: 107045
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|