Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 755-764    DOI: 10.11902/1005.4537.2023.143
Current Issue | Archive | Adv Search |
Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy
HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui()
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
Download:  HTML  PDF(11570KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The superhydrophobic surface has excellent water repellency, which helps to enhance the corrosion protection performance of the coating. In this work, a superhydrophobic and corrosion-resistant nickel-based composite coating was prepared on the surface of AZ31 Mg-alloy by combining chemical deposition and electrodeposition techniques with dynamic hydrogen bubbles as a template. The microscopic morphology, structure, composition, wettability, and corrosion protection performance of the coating were characterized using scanning electron microscopy (SEM), energy spectrometry (EDS), X-ray diffractometer (XRD), Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), optical contact angle meter and electrochemical workstation. It was found that adding ZnO nanoparticles to the electrodeposition bath may change the surface morphology of the porous nickel layer and affect its hydrophobicity. The static water contact angle (WCA) tests revealed that the highest WCA value of 160.8°±2.8° was acquired for the composite coating prepared by electrodeposition in the electrolyte containing ZnO nanoparticles of 5.0 g·L-1 and then modified by stearic acid. Compared to the bare Mg-alloy, the composite coating's corrosion potential was positively shifted by -1.23 V to -0.32 V. The corrosion current density and charge transfer resistance were reduced and increased by more than two orders of magnitude, reaching 8.41 10-7 A·cm-2 and 72.79 kΩ·cm2 respectively, indicating the good corrosion protection ability of the composite coating to the Mg-alloy.

Key words:  Mg-alloy      Ni-coating      nano-ZnO      electrodeposition      superhydrophobicity     
Received:  09 May 2023      32134.14.1005.4537.2023.143
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52271073)
Corresponding Authors:  XIE Zhi-Hui, E-mail: zhxie@cwnu.edu.cn   

Cite this article: 

HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 755-764.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.143     OR     https://www.jcscp.org/EN/Y2023/V43/I4/755

Fig.1  SEM images (a, b, d, e) and corresponding EDS elemental mappings (c, f) for ENP/NZSA-2 (a-c) and ENP/NZSA-5 (d-f) composite coatings. The insets in Fig.1b and e show the photographs and EDS spectra of corresponding coatings
SampleNiZnCO
ENP/NZSA-281.9813.404.150.46
ENP/NZSA-565.7328.874.990.40
Table 1  EDS determined element contents of ENP/NZSA-2 and ENP/NZSA-5 coatings
Fig.2  XRD patterns of ENP, ENP/NZ-0, ENP/NZ-2 and ENP/NZ-5 composite coatings (a), FT-IR spectra of ENP/NZSA-2 and ENP/NZSA-5 composite coatings (b) and their enlarged views in different wavenumber ranges (c-e)
Fig. 3  High resolution XPS spectra of ENP/NZSA-5 coating: (a) survey spectrum, and fine peaks of (b) C 1s, (c) O 1s, (d) Ni 2p, (e) Zn 2p and (f) Zn LMM
Fig.4  Cross-sectional morphology (a), line scanning profiles along the direction of the arrow in Fig.4a (b), and corresponding EDS elemental mappings of Ni (c), Mg (d), P (e), C (f), Zn (g) and O (h) for ENP/NZSA-5 coating
Fig.5  Static water contact angles of ENP/NZSA-0 (a), ENP/NZSA-2 (b) and ENP/NZSA-5 (c) coatings, static contact angles (d) and corresponding photographs (e) of ENP/NZSA-5 coating for coffee, milk, 3.5% NaCl, tea and water
Fig.6  Digital photos of ENP/NZSA-2 (a-e) and ENP/NZSA-5 (f-j) composite coatings during immersing into deionized water and taking out
Fig.7  Impedance module (a), phase angle (b), Nyquist (c) plots and corresponding logRct and log|Z| f=0.01 Hz (d) for bare magnesium alloy, ENP, ENP/NZSA-2 and ENP/NZSA-5 coatings in 3.5% NaCl solution, and equivalent circuit diagrams for AZ31 Mg-alloy (e) and various coatings (f)
Sample|Z|ƒ=0.01 HzkΩ·cm2RsΩ·cm2CPEc10-6 S·s n ·cm-2RckΩ·cm2CPEdl10-7 S·s n ·cm-2RctkΩ·cm2χ210-3
Mg-alloy0. 21832.04//102.800.321.53
ENP13.5426.2636.229.6578.4114.851.85
ENP/NZSA-239.8125.393.4314.7776.4035.053.87
ENP/NZSA-589.3826.401.0224.5667.3172.794.90
Table 2  Electrochemical parameters obtained by fitting the EIS spectra of AZ31 Mg-alloy, and ENP, ENP/NZSA-2 and ENP/NZSA-5 coatings
Fig.8  Tafel curves (a) and corresponding Ecorr and Icorr (b) of AZ31 Mg-alloy and various coatings in 3.5% NaCl solution
Sampleβa / mV·dec-1c / mV·dec-1Ecorr / VIcorr / A·cm-2
Mg-alloy/186.30-1.557.37×10-5
ENP410.90137.30-0.617.32×10-6
ENP/NZSA-2320.10154.60-0.492.04×10-6
ENP/NZSA-5/149.00-0.328.41×10-7
Table 3  Fitting data of Tafel parameters of AZ31 Mg-alloy and various coatings
1 Dai W L, Wang J H, Luo S, et al. Fabrication of super-hydrophobic surface on AM60 Mg-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 301
代卫丽, 王景行, 罗 帅 等. AM60镁合金超疏水表面制备及防腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 301
doi: 10.11902/1005.4537.2021.088
2 Hu T, Ouyang Y J, Xie Z H, et al. One-pot scalable in situ growth of highly corrosion-resistant MgAl-LDH/MBT composite coating on magnesium alloy under mild conditions [J]. J. Mater. Sci. Technol., 2021, 92: 225
doi: 10.1016/j.jmst.2021.03.021
3 Ouyang Y J, Hu T, Wang J Y, et al. Electrochemical deposition and characterization of layered double hydroxide film on magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 453
欧阳跃军, 胡 婷, 王佳音 等. 镁合金表面层状双氢氧化物的电化学沉积和表征 [J]. 中国腐蚀与防护学报, 2019, 39: 453
doi: 10.11902/1005.4537.2019.178
4 Yang G L, Ouyang Y J, Xie Z H, et al. Nickel interlayer enables indirect corrosion protection of magnesium alloy by photoelectrochemical cathodic protection [J]. Appl. Surf. Sci., 2021, 558: 149840
doi: 10.1016/j.apsusc.2021.149840
5 Liu L, Zhang X F, Lei J L, et al. Self-cleaning and self-healing protective coating on magnesium alloy [J]. Surf. Technol., 2019, 48 (3) : 27
刘 雷, 张新芳, 雷惊雷 等. 镁合金表面自清洁、自修复防护膜研究 [J]. 表面技术, 2019, 48(3) : 27
6 Seifzadeh D, Kazemi Mohsenabadi H, Rajabalizadeh Z, Electroless Ni-P plating on magnesium alloy by innovative, simple and non-toxic oxalate pretreatment and its corrosion protection [J]. RSC Adv., 2016, 6: 97241
doi: 10.1039/C6RA19984D
7 Shoghi P, Seifzadeh D, Gholizadeh-Gheshlaghi M, et al. Pretreatment-free Ni-P plating on magnesium alloy at low temperatures [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 2478
doi: 10.1016/S1003-6326(18)64894-0
8 Cai Y R, Wang X D, Liu J J, et al. Electroless Ni-Cu-P/Ni-P composite coatings on magnesium alloys and anti-corrosion mechanisms [J]. Surf. Technol., 2019, 48(3): 47
蔡毅仁, 王旭东, 刘俊珺 等. 镁合金化学镀Ni-Cu-P/Ni-P复合镀层及腐蚀防护机理研究 [J]. 表面技术, 2019, 48(3): 47
9 Li Y Q, Ouyang Y J, Fang R, et al. A nickel-underlayer/LDH-midlayer/siloxane-toplayer composite coating for inhibiting galvanic corrosion between Ni layer and Mg alloy [J]. Chem. Eng. J., 2022, 430: 132776
doi: 10.1016/j.cej.2021.132776
10 Yao W H, Wu L, Huang G S, et al. Superhydrophobic coatings for corrosion protection of magnesium alloys [J]. J. Mater. Sci. Technol., 2020, 52: 100
doi: 10.1016/j.jmst.2020.02.055
11 Huang W, Huang J X, Guo Z G, et al. Icephobic/anti-icing properties of superhydrophobic surfaces [J]. Adv. Colloid Interface Sci., 2022, 304: 102658
doi: 10.1016/j.cis.2022.102658
12 Xia T, He X Q, Zhang Q X, et al. Simple and rapid fabrication and properties of superhydrophobic coatings on the surface [J]. Surf. Technol., 2022, 51(10): 328
夏 天, 何秀权, 章桥新 等. 简易快速的表面超疏水涂层制备及其性能 [J]. 表面技术, 2022, 51(10): 328
13 Fang R, Liu R J, Xie Z H, et al. Corrosion-resistant and superhydrophobic nickel-phosphorus/nickel/PFDTMS triple-layer coating on magnesium alloy [J]. Surf. Coat. Technol., 2022, 432: 128054
doi: 10.1016/j.surfcoat.2021.128054
14 Ntelia E, Karapanagiotis I. Superhydrophobic paraloid B72 [J]. Prog. Org. Coat., 2020, 139: 105224
15 Zhou Z Y, Ma B Y, Zhang X, et al. Enhanced corrosion resistance and self-cleaning properties of superhydrophobic nickel coating fabricated by one-step electrodeposition [J]. Ceram. Int., 2023, 49: 13109
doi: 10.1016/j.ceramint.2022.12.188
16 Wang Z H, Li Y C, Zhang G J. Hydrogen bubble-templated electrodeposition of superhydrophobic Zn-Ni films [J]. New J. Chem., 2023, 47: 844
doi: 10.1039/D2NJ05478G
17 Ma F L, Shen L L, Zeng Z X. Fabricating a slippery porous nickel coating based on the hydrogen bubble template method for corrosion protection with self-healing property [J]. Surf. Topogr.: Metrol. Prop., 2022, 10: 045004
18 Comisso N, Armelao L, Cattarin S, et al. Porous oxide electrocatalysts for oxygen evolution reaction prepared through a combination of hydrogen bubble templated deposition, oxidation and galvanic displacement steps [J]. Electrochim. Acta, 2018, 273: 454
doi: 10.1016/j.electacta.2018.04.069
19 Park Y S, Choi W S, Jang M J, et al. Three-dimensional dendritic Cu-Co-P electrode by one-step electrodeposition on a hydrogen bubble template for hydrogen evolution reaction [J]. ACS Sustainable Chem. Eng., 2019, 7: 10734
doi: 10.1021/acssuschemeng.9b01426
20 Reda Y, Abdel-Karim R, Zohdy K M, et al. Electrochemical behavior of Ni-Cu foams fabricated by dynamic hydrogen bubble template electrodeposition used for energy applications [J]. Ain Shams Eng. J., 2022, 13: 101532
doi: 10.1016/j.asej.2021.06.018
21 Liu B, Yan S M, He Y, et al. Research for electrodeposited superhydrophobic Ni-W-WS2 coating and its anticorrosion and wear resistance [J]. Colloids Surf. A, 2022, 655: 130236
doi: 10.1016/j.colsurfa.2022.130236
22 Salehi M, Mozammel M, Emarati S M. Superhydrophobic and corrosion resistant properties of electrodeposited Ni-TiO2/TMPSi nanocomposite coating [J]. Colloids Surf. A, 2019, 573: 196
doi: 10.1016/j.colsurfa.2019.04.024
23 Yan Q Q, Zhou S G, Li Q F, et al. Superhydrophobic surface by SiO2 particle modified SiO2-Ni/a-C: H film deposition and superior corrosion protection [J]. Surf. Topogr.: Metrol. Prop., 2019, 7: 014003
24 Huang Z F, Yong Q W, Xie Z H. Stearic acid modified porous nickel-based coating on magnesium alloy AZ31 for high superhydrophobicity and corrosion resistance [J]. Corros. Commun., 2023, 10: 38
doi: 10.1016/j.corcom.2022.09.002
25 Wang S Y, Hou C, Wu M X, et al. Effect of choline chloride on electrodeposited superhydrophobic nickel film and the corrosion protection application [J]. Colloids Surf. A, 2021, 614: 126185
doi: 10.1016/j.colsurfa.2021.126185
26 Movahedi T, Norouzbeigi R. Synthesis of flower-like micro/nano ZnO superhydrophobic surfaces: additive effect optimization via designed experiments [J]. J. Alloy. Compd., 2019, 795: 483
doi: 10.1016/j.jallcom.2019.04.343
27 Feng Y C, Chen S G, Cheng Y F, Stearic acid modified zinc nano-coatings with superhydrophobicity and enhanced antifouling performance [J]. Surf. Coat. Technol., 2018, 340: 55
doi: 10.1016/j.surfcoat.2018.02.053
28 Mohamed M E, Ezzat A, Abdel-Gaber A M. Fabrication of eco-friendly graphene-based superhydrophobic coating on steel substrate and its corrosion resistance, chemical and mechanical stability [J]. Sci. Rep., 2022, 12: 10530
doi: 10.1038/s41598-022-14353-0 pmid: 35732683
29 Bai H, Zhang L, Gu D. Calcium stearate nanoparticles as building blocks for mechanically durable superhydrophobic coatings [J]. Mater. Chem. Phys., 2023, 294: 127040
doi: 10.1016/j.matchemphys.2022.127040
30 Feng Z B, Ren L L, Zhang J Q, et al. Effect of additives on the corrosion mechanism of nanocrystalline zinc-nickel alloys in an alkaline bath [J]. RSC Adv., 2016, 6: 88469
doi: 10.1039/C6RA18476F
31 Ouyang Y J, Huang Z F, Fang R, et al. Silica nanoparticles enhanced polysiloxane-modified nickel-based coatings on Mg alloy for robust superhydrophobicity and high corrosion resistance [J]. Surf. Coat. Technol., 2022, 450: 128995
doi: 10.1016/j.surfcoat.2022.128995
32 Hussain M M, Kunwar A, Majeed M K, et al. Superhydrophobic surface and lubricant-infused surface: implementing two extremes on electrodeposited Ni-TiO2 surface to drive optimal wettability regimes for droplets' multifunctional behaviors [J]. Adv. Eng. Mater., 2021, 23: 2100266
doi: 10.1002/adem.v23.10
33 Kuld S, Conradsen C, Moses P G, et al. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst [J]. Angew. Chem., 2014, 126: 6051
doi: 10.1002/ange.201311073
34 Li R Q, Gao Q H, Dong Q J, et al. Template-free electrodeposition of ultra-high adhesive superhydrophobic Zn/Zn stearate coating with ordered hierarchical structure from deep eutectic solvent [J]. Surf. Coat. Technol., 2020, 403: 126267
doi: 10.1016/j.surfcoat.2020.126267
35 Morales C, del Campo A, Méndez J, et al. Re-oxidation of ZnO clusters grown on HOPG [J]. Coatings, 2020, 10: 401
doi: 10.3390/coatings10040401
36 Feliu Jr S, Barranco V. XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn-Al alloy coatings on steel [J]. Acta Mater., 2003, 51: 5413
doi: 10.1016/S1359-6454(03)00408-7
37 Zhang X, Ding B, Bian Y F, et al. Synthesis of superhydrophobic surfaces with Wenzel and Cassie-Baxter state: experimental evidence and theoretical insight [J]. Nanotechnology, 2018, 29: 485601
doi: 10.1088/1361-6528/aae187
38 Lou C, Zhang R, Lu X, et al. Facile fabrication of epoxy/polybenzoxazine based superhydrophobic coating with enhanced corrosion resistance and high thermal stability [J]. Colloids Surf. A, 2019, 562: 8
doi: 10.1016/j.colsurfa.2018.10.066
39 Wang P, Zhang D, Qiu R, et al. Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium [J]. Corros. Sci., 2014, 83: 317
doi: 10.1016/j.corsci.2014.02.028
40 Li L X, Xie Z H, Fernandez C, et al. Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection [J]. Electrochim. Acta, 2020, 330: 135186
doi: 10.1016/j.electacta.2019.135186
41 Xu L, Yang X N, Fu X, et al. Fluorinated epoxy based superhydrophobic coating with robust self-healing and anticorrosive performances [J]. Prog. Org. Coat., 2022, 171: 107045
[1] CHEN Huimin, WANG Shuaixing, ZHANG Qi, ZHAN Zhongwei, DU Nan. Electrodeposition Behavior of Silver in an Alkaline DMH Plating Bath with 5,5-Dimethylhydantoin as Complexing Agent[J]. 中国腐蚀与防护学报, 2023, 43(4): 896-902.
[2] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[3] LIAN Yancheng, LIANG Fuyuan, HE Jianchao, LI Jin, WU Junwei, LENG Xuesong. Research Progress on Preparation Process of Superhydrophobic Polytetrafluoroethylene[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.
[4] LV Xin, DENG Kunkun, WANG Cuiju, NIE Kaibo, SHI Quanxin, LIANG Wei. Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[5] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[6] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[7] LIU Yuxiang, XU Anyang. Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[8] YANG Yange, CAO Jingyi, WANG Xingqi, FANG Zhigang, YU Hongfei, YU Baoxing, WANG Fuhui. Design and Performance of Zr- and/or Ti-based Chemical Conversion Coatings for Light Alloys[J]. 中国腐蚀与防护学报, 2022, 42(3): 387-394.
[9] YANG Xinyu, YANG Yuntian, LU Xiaopeng, ZHANG Tao, WANG Fuhui. Research Progress of Corrosion Inhibitor for Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
[10] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[11] DOU Jianye, QU Shaopeng, XUAN Xingyu. Service Behavior of Cerium Ion Modified SiO2 Film Prepared by Different Methods in Artificial Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 258-266.
[12] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[13] CHEN Zhenning, YONG Xingyue, CHEN Xiaochun. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[14] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[15] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
No Suggested Reading articles found!