|
|
Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys |
CHEN Zhenning, YONG Xingyue( ), CHEN Xiaochun |
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China |
|
|
Abstract The paper focused on issues concerning the micro-arc oxidation (MAO) coatings on Mg-alloys, therefore, the formation of micro-defects and the relevant impact factors were summarized. The effect of micro-defects on the corrosion-resistant performances and application of MAO coatings were analyzed. Moreover, identification techniques and post-treatment methods for MAO coatings were introduced. Finally, research topics for micro-defects in MAO coatings in the future were proposed.
|
Received: 15 January 2021
|
|
Fund: National Natural Science Foundation of China(51771013) |
Corresponding Authors:
YONG Xingyue
E-mail: yongxy@mail.buct.edu.cn
|
About author: YONG Xingyue, E-mail: yongxy@mail.buct.edu.cn
|
1 |
Sander G, Tan J, Balan P, et al. Corrosion of additively manufactured alloys: A review [J]. Corrosion, 2018, 74: 1318
|
2 |
McCafferty E. Introduction to Corrosion Science [M]. New York: Springer, 2009
|
3 |
Hu G X, Cai X, Rong Y H. Fundamental of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2010
|
|
胡赓祥, 蔡珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010
|
4 |
Lin Y Z, Yang D J. Corrosion and Corrosion Control Principle [M]. Beijing: Sinopec Press, 2007
|
|
林玉珍, 杨德钧. 腐蚀和腐蚀控制原理 [M]. 北京: 中国石化出版社, 2007
|
5 |
Wang Y C, Zhou F, Ge Y F, et al. Recent progress on the surface modification and protection of magnesium alloys [J]. Mater. China, 2020, 39: 100
|
|
王悦存, 周凡, 葛延峰等. 镁合金表面改性与防护研究进展 [J]. 中国材料进展, 2020, 39: 100
|
6 |
Liu Y, Liu S M, Yu L P, et al. Summary on corrosion behavior and micro-arc oxidation for magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 99
|
|
刘胤, 刘时美, 于鲁萍等. 镁合金的腐蚀与微弧氧化膜层研究 [J]. 中国腐蚀与防护学报, 2015, 35: 99
|
7 |
Cui X J, Ping J. Research progress of microarc oxidation for corrosion prevention of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 87
|
|
崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 87
|
8 |
Darband G B, Aliofkhazraei M, Hamghalam P, et al. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications [J]. J. Magnes. Alloy., 2017, 5: 74
|
9 |
Véliz B, Bermejo S, Orpella A, et al. Impedance modeling of silica nanoparticle metal insulator metal capacitors [J]. Electrochim. Acta, 2018, 280: 62
|
10 |
Ranade S, Forsyth M, Tan M Y J. The initiation and propagation of coating morphological and structural defects under mechanical strain and their effects on the electrochemical behaviour of pipeline coatings [J]. Prog. Org. Coat., 2017, 110: 62
|
11 |
Su Y Y, Li K Z, Hou X H, et al. Surface defects repairing of sprayed Ca-P coating by the microwave-hydrothermal method [J]. Ceram. Int., 2018, 44: 21699
|
12 |
Wang H W, Stack M M, Lyon S B, et al. The corrosion behaviour of macroparticle defects in arc bond-sputtered CrN/NbN superlattice coatings [J]. Surf. Coat. Technol., 2000, 126: 279
|
13 |
Xu P, Zhang C, Wang W, et al. Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating [J]. Electrochim. Acta, 2016, 206: 61
|
14 |
Zhang C, Chan K C, Wu Y, et al. Pitting initiation in Fe-based amorphous coatings [J]. Acta Mater., 2012, 60: 4152
|
15 |
Song G, Atrens A, St John D, et al. The anodic dissolution of magnesium in chloride and sulphate solutions [J]. Corros. Sci., 1997, 39: 1981
|
16 |
Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008
|
|
曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008
|
17 |
Zhang Y J, Yan C W, Wang F H, et al. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution [J]. Corros. Sci., 2005, 47: 2816
|
18 |
Wang S X, Peng H L, Shao Z S, et al. Sealing of anodized aluminum with phytic acid solution [J]. Surf. Coat. Technol., 2016, 286: 155
|
19 |
Deflorian F, Fedrizzi L, Rossi S, et al. Defect dimension evaluation in organic coated galvanized steel by electrochemical impedance spectroscopy [J]. J. Appl. Electrochem., 2002, 32: 921
|
20 |
Gupta G, Birbilis N, Cook A B, et al. Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3 [J]. Corros. Sci., 2013, 67: 256
|
21 |
Liu M M. The effect of sealing treatment on the corrosion and erosion-corrosion of high-velocity oxy-fuel Fe-based amorphous coating [D]. Shenyang: University of Science and Technology of China, 2019
|
|
刘明明. 封孔处理对HVOF铁基非晶涂层的腐蚀和冲蚀行为的影响研究 [D]. 沈阳: 中国科学技术大学, 2019
|
22 |
Guo J W. Microstructure and corrosion degradation behavior of magnesium alloy with microarc oxidation and hydrothermal process treated [D]. Harbin: Harbin Institute of Technology, 2019
|
|
郭君巍. 微弧氧化及水热复合改性镁合金的组织与腐蚀降解行为 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
23 |
Wang H B, Fang Z G, Jiang B L. Microarc Oxidation Technology and Its Applications in Sea Environments [M]. Beijing: National Defense Industry Press, 2010
|
|
王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用 [M]. 北京: 国防工业出版社, 2010
|
24 |
Walsh F C, Low C T J, Wood R J K, et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on light weight metal (Al, Mg, Ti) alloys [J]. Trans. IMF, 2009, 87: 122
|
25 |
Ma X, Blawert C, Höche D, et al. A model describing the growth of a PEO coating on AM50 Mg alloy under constant voltage mode [J]. Electrochim. Acta, 2017, 251: 461
|
26 |
Chen H, Wang C C, Kang Y B, et al. Research status of micro-arc oxidation of magnesium alloy [J]. Surf. Technol., 2019, 48(7): 49
|
|
陈宏, 王成成, 康亚斌等. 镁合金微弧氧化的研究现状 [J]. 表面技术, 2019, 48(7): 49
|
27 |
Wang R Q, Wu Y K, Wu G R, et al. An investigation about the evolution of microstructure and composition difference between two interfaces of plasma electrolytic oxidation coatings on Al [J]. J. Alloy. Compd., 2018, 753: 272
|
28 |
Cakmak E, Tekin K C, Malayoglu U, et al. The effect of substrate composition on the electrochemical and mechanical properties of PEO coatings on Mg alloys [J]. Surf. Coat. Technol., 2010, 204: 1305
|
29 |
Dou J H. Preparation and corrosion resistance of degradable composite coating on magnesium alloy for orthopedics [D]. Ji’nan: Shandong University, 2018
|
|
窦金河. 医用镁合金表面可降解复合膜层的制备及其耐蚀性的研究 [D]. 济南: 山东大学, 2018
|
30 |
Song Y L, Liu Y H, Yu S R, et al. Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance [J]. Appl. Surf. Sci., 2008, 254: 3014
|
31 |
Muhaffel F, Mert F, Cimenoglu H, et al. Characterisation and corrosion behaviour of plasma electrolytic oxidation coatings on high pressure die cast Mg-5Al-0.4Mn-xCe (x=0, 0.5, 1) alloys [J]. Surf. Coat. Technol., 2015, 269: 200
|
32 |
Yoo B, Shin K R, Hwang D Y, et al. Effect of surface roughness on leakage current and corrosion resistance of oxide layer on AZ91 Mg alloy prepared by plasma electrolytic oxidation [J]. Appl. Surf. Sci., 2010, 256: 6667
|
33 |
Wang Y, Lu D H, Wu G L, et al. Effect of laser surface remelting pretreatment with different energy density on MAO bioceramic coating [J]. Surf. Coat. Technol., 2020, 393: 125815
|
34 |
Wang L Q, Zhou J S, Liang J, et al. Microstructure and corrosion behavior of plasma electrolytic oxidation coated magnesium alloy pre-treated by laser surface melting [J]. Surf. Coat. Technol., 2012, 206: 3109
|
35 |
Gheytani M, Aliofkhazraei M, Bagheri H R, et al. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy [J]. J. Alloy. Compd., 2015, 649: 666
|
36 |
Chen L L, Gu Y H, Liu L, et al. Effect of ultrasonic cold forging technology as the pretreatment on the corrosion resistance of MAO Ca/P coating on AZ31B Mg alloy [J]. J. Alloy. Compd., 2015, 635: 278
|
37 |
Wei Z, Ma B J, Li L, et al. Effect of ultrasonic rolling pretreatment on corrosion resistance of micro-arc oxidation coating of Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 117
|
|
魏征, 马保吉, 李龙等. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 117
|
38 |
Hussein R O, Zhang P, Nie X, et al. The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62 [J]. Surf. Coat. Technol., 2011, 206: 1990
|
39 |
Cui X J, Wang R, Wei J S, et al. Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on AZ31B Mg alloy [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 495
|
|
崔学军, 王荣, 魏劲松等. 电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 495
|
40 |
Zou B, Lü G H, Zhang G L, et al. Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy [J]. Trans. Nonferrous Met. Soc., 2015, 25: 1500
|
41 |
Liu F, Yu J, Song Y W, et al. Effect of potassium fluoride on the in-situ sealing pores of plasma electrolytic oxidation film on AM50 Mg alloy [J]. Mater. Chem. Phys., 2015, 162: 452
|
42 |
Ryu H S, Mun S J, Lim T S, et al. Microstructure evolution during plasma electrolytic oxidation and its effects on the electrochemical properties of AZ91D Mg alloy [J]. J. Electrochem. Soc., 2011, 158: C266
|
43 |
Pak S N, Yao Z P, Ju K S, et al. Effect of organic additives on structure and corrosion resistance of MAO coating [J]. Vacuum, 2018, 151: 8
|
44 |
Zhang Y, Chen F, Zhang Y, et al. Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy [J]. Tribol. Int., 2020, 146: 106135
|
45 |
Gu Y H, Bandopadhyay S, Chen C F, et al. Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid [J]. J. Alloy.Compd., 2012, 543: 109
|
46 |
Tang J W, Shao Y W, Zhang T, et al. Effect of cyclic pressure on degradation Behavior of epoxy coating in simulated deep ocean environment [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 275
|
|
唐俊文, 邵亚薇, 张涛等. 循环压力对环氧涂层在模拟深海环境中失效行为的影响 [J]. 中国腐蚀与防护学报, 2011, 31: 275
|
47 |
Wang Y, Huang Z Q, Yan Q, et al. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test [J]. Appl. Surf. Sci., 2016, 378: 435
|
48 |
Chen Z N, Ji H T, Geng X Q, et al. 3-D distribution characteristics of the micro-defects in the PEO coating on ZM6 mg-alloy during corrosion [J]. Corros. Sci., 2020, 174: 108821
|
49 |
Chen Y L. Corrosion Control and Strength Assessment of Naval Aircraft Structures [M]. Beijing: National Defense Industry Press, 2009
|
|
陈跃良. 海军飞机结构腐蚀控制及强度评估 [M]. 北京: 国防工业出版社, 2009
|
50 |
Fischerauer S F, Kraus T, Wu X, et al. In vivo degradation performance of micro-Arc-oxidized magnesium implants: A micro-CT study in rats [J]. Acta Biomater., 2013, 9: 5411
|
51 |
Xu H T, Hu T, Wang M L, et al. Degradability and biocompatibility of magnesium-MAO: The consistency and contradiction between in-vitro and in-vivo outcomes [J]. Arab. J. Chem., 2020, 13: 2795
|
52 |
Toorani M, Aliofkhazraei M, Mahdavian M, et al. Effective PEO/Silane pretreatment of epoxy coating applied on AZ31B Mg alloy for corrosion protection [J]. Corros. Sci., 2020, 169: 108608
|
53 |
Bordbar-Khiabani A, Yarmand B, Mozafari M. Functional PEO layers on magnesium alloys: Innovative polymer-free drug-eluting stents [J]. Surf. Innov., 2018, 6: 237
|
54 |
Zhang X, Aliasghari S, Němcová A, et al. X-ray computed tomographic investigation of the porosity and morphology of plasma electrolytic oxidation coatings [J]. ACS Appl. Mater. Interfaces, 2016, 8: 8801
|
55 |
Lu X P, Blawert C, Tolnai D, et al. 3D reconstruction of plasma electrolytic oxidation coatings on Mg alloy via synchrotron radiation tomography [J]. Corros. Sci., 2018, 139: 395
|
56 |
Zhao P X, Wu W, Dan Y. Application of spatial-resolution technology for in-situ monitoring of metal corrosion [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 495
|
|
赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用 [J]. 中国腐蚀与防护学报, 2020, 40: 495
|
57 |
Mingo B, Guo Y, Němcová A, et al. Incorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloy [J]. Electrochim. Acta, 2019, 299: 772
|
58 |
Zhang S D, Wu J, Qi W B, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel [J]. Corros. Sci., 2016, 110: 57
|
59 |
Friedemann A E R, Thiel K, Haßlinger U, et al. Investigations into the structure of PEO-layers for understanding of layer formation [J]. Appl. Surf. Sci., 2018, 443: 467
|
60 |
Karavai O V, Bastos A C, Zheludkevich M L, et al. Localized electrochemical study of corrosion inhibition in microdefects on coated AZ31 magnesium alloy [J]. Electrochim. Acta, 2010, 55: 5401
|
61 |
Pilbáth A, Szabó T, Telegdi J, et al. SECM study of steel corrosion under scratched microencapsulated epoxy resin [J]. Prog. Org. Coat., 2012, 75: 480
|
62 |
Huang V M, Wu S L, Orazem M E, et al. Local electrochemical impedance spectroscopy: A review and some recent developments [J]. Electrochim. Acta, 2011, 56: 8048
|
63 |
Jöensson M, Thierry D, Lebozec N. The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe [J]. Corros. Sci., 2006, 48: 1193
|
64 |
Wang W, Zhang X, Wang J. Heterogeneous electrochemical characteristics of biofilm/metal interface and local electrochemical techniques used for this purpose [J]. Mater. Corros., 2009, 60: 957
|
65 |
Jiang M, Chai Y S, Zhou J, et al. Temperature field distribution of micro-arc oxidation process based on COMSOL [J]. Surf. Technol., 2017, 46(5): 17
|
|
姜曼, 柴永生, 周京等. 基于COMSOL的微弧氧化过程温度场分布研究 [J]. 表面技术, 2017, 46(5): 17
|
66 |
Ma X, Blawert C, Höche D, et al. Investigation of electrode distance impact on PEO coating formation assisted by simulation [J]. Appl. Surf. Sci., 2016, 388: 304
|
67 |
Ma X, Blawert C, Höche D, et al. Simulation assisted investigation of substrate geometry impact on PEO coating formation [J]. Surf. Coat. Technol., 2018, 350: 281
|
68 |
Peng F, Wang D, Tian Y, et al. Sealing the pores of PEO coating with Mg-Al layered double hydroxide: enhanced corrosion resistance, cytocompatibility and drug delivery ability [J]. Sci. Rep., 2017, 7: 8167
|
69 |
Liu P, Liu Q F, Huang D Q, et al. Research progress of pore sealing technology for micro-arc oxidation films [J]. Surf. Technol., 2019, 48(7): 61
|
|
刘朋, 刘群峰, 黄德群等. 微弧氧化膜封孔技术研究进展 [J]. 表面技术, 2019, 48(7): 61
|
70 |
Duan H P, Du K Q, Yan C W, et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D [J]. Electrochim. Acta, 2006, 51: 2898
|
71 |
Zeng D P, Liu Z Y, Bai S, et al. Influence of sealing treatment on the corrosion resistance of PEO coated Al-Zn-Mg-Cu alloy in various environments [J]. Coatings, 2019, 9: 867
|
72 |
Yang J J, Blawert C, Lamaka S V, et al. Corrosion protection properties of inhibitor containing hybrid PEO-epoxy coating on magnesium [J]. Corros. Sci., 2018, 140: 99
|
73 |
Li Z X, Yang W B, Yu Q L, et al. New method for the corrosion resistance of AZ31 Mg alloy with a porous micro-arc oxidation membrane as an ionic corrosion inhibitor container [J]. Langmuir, 2019, 35: 1134
|
74 |
Ivanou D K, Yasakau K A, Kallip S, et al. Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol-gel techniques [J]. RSC Adv., 2016, 6: 12553
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|