Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 387-394    DOI: 10.11902/1005.4537.2021.301
Current Issue | Archive | Adv Search |
Design and Performance of Zr- and/or Ti-based Chemical Conversion Coatings for Light Alloys
YANG Yange1(), CAO Jingyi2, WANG Xingqi1, FANG Zhigang2, YU Hongfei1, YU Baoxing1, WANG Fuhui3
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Unit 92228, People's Liberation Army, Beijing 100072, China
3.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(10833KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zr- and/or Ti-based chemical conversion coating (ZrTiCC) is an important and representative chromium-free surface modification technology for Al-alloys and Mg-alloys. ZrTiCC has reached the maturity of final commercial utilization in industry. The design concept to improve the performance of ZrTiCC was proposed based on the deposition mechanism analysis of conventional ZrTiCC in this paper. Moreover, the design concept was applied on the 5083 Al-alloy and AZ91D Mg-alloy. The results indicated that both the corrosion resistance of the coated substrates and the adhesion property with organic coating were significantly improved. Finally, the key factors affecting the performance of ZrTiCC were analyzed and the future development trend was expected.

Key words:  Mg-alloy      Al-alloy      conversion coating      Zr- and/or Ti-based     
Received:  26 October 2021     
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2019YFC0312100);Special Scientific Research Program for Civil Aircraft(MJ-2017-J-99)
Corresponding Authors:  YANG Yange     E-mail:  ygyang@imr.ac.cn
About author:  YANG Yange, E-mail: ygyang@imr.ac.cn

Cite this article: 

YANG Yange, CAO Jingyi, WANG Xingqi, FANG Zhigang, YU Hongfei, YU Baoxing, WANG Fuhui. Design and Performance of Zr- and/or Ti-based Chemical Conversion Coatings for Light Alloys. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 387-394.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.301     OR     https://www.jcscp.org/EN/Y2022/V42/I3/387

AlloyMgMnSiFeCrCuZnTiNiOthersAl
5083 Al-alloy4.330.540.120.340.079<0.01<0.02<0.02---<0.05Bal.
2A12 Al-alloy1.510.610.0850.29---4.510.140.0350.005---Bal.
6061 Al-alloy0.840.060.410.330.120.18---0.03------Bal.
AZ91D Mg-alloyBal.0.19<0.05<0.02------0.67---------8.61
Table 1  Compositions of the test Al-and Mg-based alloys (mass fraction / %)
Non-commercial conversion solutionCommercial conversion solution
Conversion bathSubstrateTrade name (Manufacturer)Main compositionSubstrate
K2ZrF6Al-alloy[22]Henkel AG & Co. KGaAH2ZrF6+CuAl-alloy[39,40]
H2ZrF6Al-alloy[25-30]Bonderite MNT 5200 (Henkel)H2ZrF6+H2TiF6Al-alloy[41]
H2ZrF6+ H2TiF6Al-alloy[31-33]Alodine 4830 (Henkel)H2ZrF6+H2TiF6Al-alloy[42]
K2ZrF6+ K2TiF6Al-alloy[20]Surtec 650 (Surtec International)H2ZrF6+Cr(III)Mg-alloy[43]
K2ZrF6Mg-alloy[34,35]
H2ZrF6Mg-alloy[36,37]
H2ZrF6+H2TiF6Mg-alloy[38]
Table 2  Compositions of typical commercial and non- commercial Zirconium and/or Titanium-based conversion solutions
Fig.1  Evolutions of pH and OCP on the surface of AA2024 Al-based alloy in the conversion process of Alodine 5200 coating (Ti-based)[44]
Fig.2  Real-time X-ray phase-contrast images of a nano Al2O3/phosphate composite conversion coating formed in the presence of a magnetic field of 0.3 T (a~c), and a phosphate conversion coating formed in the absence of a magnetic field (d~f) after immersion time of 2 min (a, d), 5 min (b, e) and 8 min (c, f)[45]
Fig.3  Schematic diagrams of the formation of Zr-based conversion coating on Al-based alloys: (a) raw Al-alloy sample, (b) remove of the intermetallics, (c) beginning of the nuclei, (d) formation of a fine particle layer, (e) formation and growth of new nuclei, (f) formation of double layers, (g) deposition of new nuclei on top of the coating, (h) formation of three layers structure[22]
Fig.4  Surface (a) and cross-sectional (b) morphologies of the Zr-based conversion coating on Al-based alloys[22]
Fig.5  Surface (a) and cross-sectional (b) morphologies of the Zr/Ti-based conversion coating on Mg-based alloy, macrosc-opic morphologies of Mg-based alloy substrate (c) and Zr/ Ti-based conversion coating (d) after 48 h salt spray test[24]
Fig.6  Polarization curves of 2A12 Al-based alloy and Zr-based conversion coating[23]
Fig.7  Microscopic morphologies of Zr-based conversion coating on Al-based alloy without (a), with alkaline degreasing (b), alkaline degreasing and acid cleaning (c) and acid cleaning (d)[22]
1 Meng Q J, Frankel G S. Characterization of chromate conversion coating on AA7075-T6 aluminum alloy [J]. Surf. Interface Anal., 2004, 36: 30
2 Zhao J, Xia L, Sehgal A, et al. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3 [J]. Surf. Coat. Technol., 2001, 140: 51
3 Kulinich S A, Akhtar A S, Susac D, et al. On the growth of conversion chromate coatings on 2024-Al alloy [J]. Appl. Surf. Sci., 2007, 253: 3144
4 Lunder O, Walmsley J C, Mack P, et al. Formation and characterisation of a chromate conversion coating on AA6060 aluminium [J]. Corros. Sci., 2005, 47: 1604
5 Liu Y, Arenas A M, Garcia-Vergara S G, et al. Ageing effects in the growth of chromate conversion coatings on aluminium [J]. Corros. Sci., 2005, 47: 145
6 Xia L, McCreery R L. Structure and function of ferricyanide in the formation of chromate conversion coatings on aluminum aircraft alloy [J]. J. Electrochem. Soc., 1999, 146: 3696
7 Guo Y, Franke G S. Characterization of trivalent chromium process coating on AA2024-T3 [J]. Surf. Coat. Technol., 2012, 206: 3895
8 Li L L, Kim D Y, Swain G M. Transient formation of chromate in trivalent chromium process (TCP) coatings on AA2024 as probed by Raman spectroscopy [J]. J. Electrochem. Soc., 2012, 159: C326
9 Li L L, Swain G M. Effects of aging temperature and time on the corrosion protection provided by trivalent chromium process coatings on AA2024-T3 [J]. ACS Appl. Mater. Interfaces, 2013, 5: 7923
10 Niu L Y, Jiang Z H, Li G Y, et al. A study and application of zinc phosphate coating on AZ91D magnesium alloy [J]. Surf. Coat. Technol., 2006, 200: 3021
11 Kouisni L, Azzi M, Zertoubi M, et al. Phosphate coatings on magnesium alloy AM60 part 1: study of the formation and the growth of zinc phosphate films [J]. Surf. Coat. Technol., 2004, 185: 58
12 Zhou W Q, Shan D Y, Han E-H, et al. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy [J]. Corros. Sci., 2008, 50: 329
13 De Frutos A, Arenas M A, Liu Y, et al. Influence of pre-treatments in cerium conversion treatment of AA2024-T3 and 7075-T6 alloys [J]. Surf. Coat. Technol., 2008, 202: 3797
14 Campestrini P, Terryn H, Hovestad A, et al. Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure [J]. Surf. Coat. Technol., 2004, 176: 365
15 Bethencourt M, Botana F J, Cano M J, et al. Using EIS to analyse samples of Al-Mg alloy AA5083 treated by thermal activation in cerium salt baths [J]. Corros. Sci., 2008, 50: 1376
16 Palomino L E M, Aoki I V, De Melo H G. Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024-T3 covered with Cu-rich smut [J]. Electrochim. Acta, 2006, 51: 5943
17 Yang K H, Ger M D, Hwu W H, et al. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy [J]. Mater. Chem. Phys., 2007, 101: 480
18 Yang Y C, Tsai C Y, Huang Y H, et al. Formation mechanism and properties of titanate conversion coating on AZ31 magnesium alloy [J]. J. Electrochem. Soc., 2012, 159: C226
19 Lunder O, Simensen C, Yu Y, et al. Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium [J]. Surf. Coat. Technol., 2004, 184: 278
20 Coloma P S, Izagirre U, Belaustegi Y, et al. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications [J]. Appl. Surf. Sci., 2015, 345: 24
21 Chen X B, Birbilis N, Abbott T B. Review of corrosion-resistant conversion coatings for magnesium and its alloys [J]. Corrosion, 2011, 67: 035005
22 Liu Y. Investigation of preparation and formation mechanism of zirconium-based conversion coating on aluminum alloy [D]. Harbin: Harbin Engineering University, 2017
刘洋. 铝合金锆基转化膜的制备及成膜机理的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017
23 Yu H F, Shao B, Zhang Y, et al. Preparation and properties of Zr-based conversion coating on 2A12 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 101
于宏飞, 邵博, 张悦等. 2A12铝合金锆基转化膜的制备及性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 101
24 Li L H. Mechanism of the formation and corrosion resistance of Ti-Zr conversion coatings on AZ91D magnesium alloy [D]. Shenyang: Shenyang Ligong University, 2016
李丽华. AZ91D镁合金钛锆转化膜成膜机制及耐蚀性能研究 [D]. 沈阳: 沈阳理工大学, 2016
25 Deck P D, Reichgott D W, Metchem B, et al. Characterization of chromium-free no-rinse prepaint coatings on aluminum and galvanized steel [J]. Met. Finish., 1992, 90: 29
26 Niknahad M, Moradian S, Mirabedini S M. The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy [J]. Corros. Sci., 2010, 52: 1948
27 George F O, Skeldon P, Thompson G E. Formation of zirconium-based conversion coatings on aluminium and Al-Cu alloys [J]. Corros. Sci., 2012, 65: 231
28 Zhong X, Wu X S, Jia Y Y, et al. Self-repairing vanadium-zirconium composite conversion coating for aluminum alloys [J]. Appl. Surf. Sci., 2013, 280: 489
29 Golru S S, Attar M M, Ramezanzadeh B. Morphological analysis and corrosion performance of zirconium based conversion coating on the aluminum alloy 1050 [J]. J. Ind. Eng. Chem., 2015, 24: 233
30 Golru S S, Attar M M, Ramezanzadeh B. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating [J]. Appl. Surf. Sci., 2015, 345: 360
31 Yi A H, Li W F, Du J, et al. Preparation and properties of chrome-free colored Ti/Zr based conversion coating on aluminum alloy [J]. Appl. Surf. Sci., 2012, 258: 5960
32 Zuo X, Li W F, Mu S L, et al. Investigation of composition and structure for a novel Ti-Zr chemical conversion coating on 6063 aluminum alloy [J]. Prog. Org. Coat., 2015, 87: 61
33 Yi A H, Li W F, Du J, et al. Effects of Mn2+ on the chrome-free colored Ti/Zr-based conversion coating on 6063 aluminum alloy [J]. Surf. Interface Anal., 2015, 47: 863
34 Chen X M, Li G Y, Lian J S, et al. An organic chromium-free conversion coating on AZ91D magnesium alloy [J]. Appl. Surf. Sci., 2008, 255: 2322
35 Chen X M, Li G Y, Lian J S, et al. Study of the formation and growth of tannic acid based conversion coating on AZ91D magnesium alloy [J]. Surf. Coat. Technol., 2009, 204: 736
36 Verdier S, Delalande S, Van Der Laak N, et al. Monochromatized x-ray photoelectron spectroscopy of the AM60 magnesium alloy surface after treatments in fluoride-based Ti and Zr solutions [J]. Surf. Interface Anal., 2005, 37: 509
37 Verdier S, Van Der Laak N, Dalard F, et al. An electrochemical and SEM study of the mechanism of formation, morphology, and composition of titanium or zirconium fluoride-based coatings [J]. Surf. Coat. Technol., 2006, 200: 2955
38 Yi A H, Du J, Wang J, et al. Preparation and characterization of colored Ti/Zr conversion coating on AZ91D magnesium alloy [J]. Surf. Coat. Technol., 2015, 276: 239
39 Cerezo J, Vandendael I, Posner R, et al. Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces [J]. Surf. Coat. Technol., 2013, 236: 284
40 Cerezo J, Taheri P, Vandendael I, et al. Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy [J]. Surf. Coat. Technol., 2014, 254: 277
41 Li L L, Whitman B W, Swain G M. Characterization and performance of a Zr/Ti pretreatment conversion coating on AA2024-T3 [J]. J. Electrochem. Soc., 2015, 162: C279
42 Peng D D, Wu J S, Yan X L, et al. The formation and corrosion behavior of a zirconium-based conversion coating on the aluminum alloy AA6061 [J]. J. Coat. Technol. Res., 2016, 13: 837
43 Brady M P, Joost W J, Warren C D. Insights from a recent meeting: current status and future directions in magnesium corrosion research [J]. Corrosion, 2017, 73: 452
44 Li L L, Desouza A L, Swain G M. In situ pH measurement during the formation of conversion coatings on an aluminum alloy (AA2024) [J]. Analyst, 2013, 138: 4398
45 Zhao M, Li J G, He G P, et al. Nano Al2O3/phosphate composite conversion coating formed on magnesium alloy for enhancing corrosion resistance [J]. J. Electrochem. Soc., 2013, 160: C553
[1] YANG Xinyu, YANG Yuntian, LU Xiaopeng, ZHANG Tao, WANG Fuhui. Research Progress of Corrosion Inhibitor for Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
[2] HUANG Zhaoxin, ZHU Zhiping, ZHOU Pan, JIANG Yuankang, HE Mingpeng, WANG Zhenggang. Corrosion Characteristics of Propylene Glycol Antifreeze in Valve Cooling System of Converter Station[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
[3] WENG Shuo, YU Jun, ZHAO Lihui, FENG Jinzhi, ZHENG Songlin. Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[4] SUN Xiaoguang, WANG Rui, ZHANG Zhiyi, HAN Xiaohui, LI Gangqing. On-line Corrosion Monitoring Technology for High-speed Train in Dynamic Service Circumstance[J]. 中国腐蚀与防护学报, 2022, 42(3): 441-446.
[5] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[6] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[7] CHEN Zhenning, YONG Xingyue, CHEN Xiaochun. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[8] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[9] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[10] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[11] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[12] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[13] ZHAN Dongdong, WANG Cheng, QIAN Jiyu, WANG Wen, ZHOU Tong, ZHU Shenglong, WANG Fuhui. Effect of Trace Cl- and Cu2+ Ions on Corrosion Behavior of 3A21 Al-alloy in Ethylene Glycol Coolant[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[14] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[15] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
No Suggested Reading articles found!