Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 896-902    DOI: 10.11902/1005.4537.2022.262
Current Issue | Archive | Adv Search |
Electrodeposition Behavior of Silver in an Alkaline DMH Plating Bath with 5,5-Dimethylhydantoin as Complexing Agent
CHEN Huimin1, WANG Shuaixing1(), ZHANG Qi2, ZHAN Zhongwei2, DU Nan1
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Download:  HTML  PDF(2337KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electroplating silver is carried out in an alkaline DMH plating bath with 5,5-dimethylhydantoin (DMH) as complexing agent. The cathodic reduction process of silver from alkaline DMH plating bath is analyzed by chronopotentiometry, cathodic polarization curve and electrochemical impedance spectroscopy (EIS), meanwhile, the nucleation/growth mechanism of silver are also studied by cyclic voltammetry and chronoamperometry, finally the electrodeposition behavior of silver in alkaline DMH complex system is comprehensively discussed. The results show that the main form of silver complex ions in the alkaline DMH plating system is [Ag(C5H7N2O2)2]-, which is converted to [Ag(C5H7N2O2)] through a preceding reaction and discharged directly on the cathode. The electrodeposition process of silver in this system is an irreversible electrode reaction controlled by diffusion step. Besides, the electrodeposition of silver undergoes a nucleation process and follows a three-dimensional transient nucleation mechanism.

Key words:  5,5-dimethylhydantoin      silver      electrodeposition      nucleation mechanism     
Received:  27 August 2022      32134.14.1005.4537.2022.262
ZTFLH:  TG179  
Fund: Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(20204BCJL23033);Industry-University-Reserch Cooperation Program of Aero Engine Corporation of China(HFZL2020CXY026);Jiangxi Postgraduate Innovation Fund(YC2021-S654)
Corresponding Authors:  WANG Shuaixing, E-mail: wsxxpg@126.com   

Cite this article: 

CHEN Huimin, WANG Shuaixing, ZHANG Qi, ZHAN Zhongwei, DU Nan. Electrodeposition Behavior of Silver in an Alkaline DMH Plating Bath with 5,5-Dimethylhydantoin as Complexing Agent. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 896-902.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.262     OR     https://www.jcscp.org/EN/Y2023/V43/I4/896

Fig.1  Relationship between lnc (C5H7N2O2-) and equilibrium potential
Fig.2  Chronopotentiometric curves of silver electrodeposition in alkaline DMH solutions
Fig.3  Relationship curve between Iτ1/2 and i
Fig.4  Cathodic polarization curves of bath systems with different DMH content
Fig.5  Relationship curve between lnI and ln[c(C5H7N2O )] at -0.50 V
Fig.6  Cyclic voltammetry of Ag deposition on glassy carbon electrode
ν / mV·s-1ipc / mAEpc / V
501.278-1.052
300.852-1.033
200.710-0.989
100.568-0.968
Table 1  Cyclic voltammetry curve data at different scanning speeds
Fig.7  Electrochemical impedance spectroscopy for the electrodeposition of silver at -0.70~-0.90 V (a) and -1.00 V (b) deposition potentials
Fig.8  Current time transient curve for the electrodeposition of silver from alkaline DMH bath
Fig.9  The non-dimensional polts of (I/Im)2~t/tm
1 Zhou Y L, Huo Y J. The comparison of electrochemical migration mechanism between electroless silver plating and silver electroplating [J]. J. Mater. Sci. Mater. Electron., 2016, 27: 931
doi: 10.1007/s10854-015-3836-z
2 Ren F Z, Yin L T, Wang S S, et al. Cyanide-free silver electroplating process in thiosulfate bath and microstructure analysis of Ag coatings [J]. Trans. Nonferrous. Met. Soc. China, 2013, 23: 3822
doi: 10.1016/S1003-6326(13)62935-0
3 Satpathy B, Jena S, Das S, et al. A comparative study of electrodeposition routes for obtaining silver coatings from a novel and environment-friendly thiosulphate-based cyanide-free electroplating bath [J]. Surf. Coat. Technol., 2021, 424: 127680
doi: 10.1016/j.surfcoat.2021.127680
4 Hubin A, Vereecken J. Electrochemical reduction of silver thiosulphate complexes Part II Mechanism and kinetics [J]. J. Appl. Electrochem., 1994, 24: 396
5 Wei L A. Cleaner production technology of non-cyanide silver plating [J]. Electroplat. Finish., 2004, 23(5) : 27
魏立安. 无氰镀银清洁生产技术 [J]. 电镀与涂饰, 2004, 23(5): 27
6 Liu A M, Ren X F, Zhang J, et al. A composite additive used for an excellent new cyanide-free silver plating bath [J]. New J. Chem., 2015, 39: 2409
doi: 10.1039/C4NJ02060J
7 Bai Z X, Huang S R. Non-cyanide bright silver plating [J]. Electroplat. Pollut. Control, 2001, 21(1): 21
白祯遐, 黄锁让. 无氰光亮镀银 [J]. 电镀与环保, 2001, 21(1): 21
8 Gan H Y, Liu G M, Huang C H, et al. The influence of pH and current density for nano-silver electrodeposited in cyanide-free succinimide bath [J]. Surf. Interf., 2021, 27: 101487
9 Bi C, Liu D F, Zeng Q Y. Research on additives for succinimide cyanide-free silver electroplating [J]. Electroplat. Finish., 2016, 35(3): 131
毕 晨, 刘定富, 曾庆雨. 丁二酰亚胺体系无氰镀银添加剂的研究 [J]. 电镀与涂饰, 2016, 35(3): 131
10 Gan H Y, Liu G M, Huang C H, et al. Effect of auxiliary complexant on properties of silver coatings electroplated from cyanide-free succinimide bath [J]. Electroplat. Finish., 2020, 39: 1457
甘鸿禹, 刘光明, 黄超华 等. 辅助配位剂对丁二酰亚胺无氰镀银层性能的影响 [J]. 电镀与涂饰, 2020, 39: 1457
11 Liu A M, Ren X F, Wang B, et al. Complexing agent study via computational chemistry for environmentally friendly silver electrodeposition and the application of a silver deposit [J]. RSC Adv., 2014, 4: 40930
doi: 10.1039/C4RA05869K
12 Song W X, Li T T, Ma J Y, et al. Effect of current density on silver electroplating in nicotinic acid system [J]. Electroplat. Finish., 2018, 37: 201
宋伟星, 李涛涛, 马进宇 等. 电流密度对烟酸体系电镀银的影响 [J]. 电镀与涂饰, 2018, 37: 201
13 Liu A M, Ren X F, Wang C, et al. DMH and NA-based cyanide-free silver electroplating bath: a promising alternative to cyanide ones in microelectronics [J]. Ionics, 2021, 27: 417
doi: 10.1007/s11581-020-03541-5
14 Hajiahmadi Z, Tavangar Z. Proposing a new complexing agent for cyanide-free silver electroplating through a comprehensive computational study of dimethyl hydantoin [J]. Mol. Simulat., 2021, 47: 619
doi: 10.1080/08927022.2021.1895436
15 Liu A M, Ren X F, Jie Z, et al. Complexing agent study for environmentally friendly silver electrodeposition (II): electrochemical behavior of silver complex [J]. RSC Adv., 2016, 6: 7348
doi: 10.1039/C5RA23766A
16 Oyaizu K, Ohtani Y, Shiozawa A, et al. Highly stable gold (III) complex with a hydantoin ligand in alkaline media [J]. Inorg. Chem., 2005, 44: 6915
doi: 10.1021/ic050515x
17 Pizzetti F, Salvietti E, Giurlani W, et al. Cyanide-free silver electrodeposition with polyethyleneimine and 5,5-dimethylhydantoin as organic additives for an environmentally friendly formulation [J]. J. Electroanal. Chem., 2022, 911: 116196
doi: 10.1016/j.jelechem.2022.116196
18 Zhu Y P, Wang W. Effects of concentration of 5,5-dimethylhydantoin as complexing agent and pH value of plating bath on electrodeposition of Silver [J]. Mater. Prot., 2015, 48(1): 1
朱雅平, 王 为. 银的电沉积过程与5,5-二甲基乙内酰脲配位剂浓度及pH值的关系 [J]. 材料保护, 2015, 48(1): 1
19 Lu J. Non-cyanide silver electroplating using DMH as complexing agent and investigation on electrodeposition behaviors [D]. Harbin: Harbin Institute of Technology, 2007
卢俊峰. 基于DMH为配位剂的无氰电镀银工艺及电沉积行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2007
20 Pavlovich G Z, Luthy R G. Complexation of metals with hydantoins [J]. Water Res., 1988, 22: 327
doi: 10.1016/S0043-1354(88)90160-1
21 Liao C F, Fang M Z, Wang X, et al. Chronoamperometry and chronopotentiometry curves of NaCl-KCl-Na2WO4 eutectic system [J]. Chin. J. Rare Met., 2016, 40: 784
廖春发, 房孟钊, 王 旭 等. NaCl-KCl-Na2WO4共融体系的计时电流与计时电位曲线分析 [J]. 稀有金属, 2016, 40: 784
22 Yang Y F, Gong Z Q, Li Q G. Electrochemical deposition of trivalent chromium [J]. J. Cent. South Univ. (Sci. Technol.), 2008, 39: 112
杨余芳, 龚竹青, 李强国. 三价铬的电化学沉积 [J]. 中南大学学报 (自然科学版), 2008, 39: 112
23 Li Y Y, Du N, Shu W F, et al. Electrodeposition behavior of zine in alkaline zincate electrolyte [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 89
李园园, 杜 楠, 舒伟发 等. 碱性锌酸盐体系中Zn的电沉积行为研究 [J]. 中国腐蚀与防护学报, 2014, 34: 89
doi: 10.11902/1005.4537.2013.059
24 Liu Y Q, Liu G M, Fan W X, et al. Effect of polyethylene glycol-600 on acidic Zn-Ni alloy electroplating and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 235
刘永强, 刘光明, 范文学 等. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 235
doi: 10.11902/1005.4537.2021.084
25 Bonou L, Eyraud M, Crousier J. Nucleation and growth of copper on glassy carbon and steel [J]. J. Appl. Electrochem., 1994, 24: 906
doi: 10.1007/BF00348780
26 Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
27 Peng W J, Wang Y Y. Mechanism of zinc electroplating in alkaline zincate solution [J]. J. Cent. South Univ. Technol., 2007, 14(1): 37
doi: 10.1007/s11771-007-0008-1
28 Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation [J]. Electrochim. Acta, 1983, 28: 879
doi: 10.1016/0013-4686(83)85163-9
[1] HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[2] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[3] DOU Jianye, QU Shaopeng, XUAN Xingyu. Service Behavior of Cerium Ion Modified SiO2 Film Prepared by Different Methods in Artificial Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 258-266.
[4] ZHANG Chenyang, LIU Huicong, HAN Dongxiao, ZHU Liqun, LI Weiping. Preparation of Micron SiC/Ni-Co-P Composite Coatings and Influencing Factors[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[5] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[6] ZHAO Boru, SUN Zhi, ZHAO Jianwei, CHEN Zhidong. Self-assembly Process of Hexadecanethiol on Silver Plating Surface and Its Protectiveness[J]. 中国腐蚀与防护学报, 2020, 40(3): 281-288.
[7] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[8] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[9] Bin JIANG, Lilan ZENG, Tao LIANG, Haobo PAN, Yanxin QIAO, Jing ZHANG, Ying ZHAO. Directional Electrodeposition of Micro-nano Superhyd-rophobic Coating on 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[10] Shibing DING,Tengfei XIANG,Cheng LI,Shunli ZHENG,Qi WANG,Mengping DU. A Simple Two-step Process for Fabrication of Super-hydrophobic Nickel Film by Electro-deposition Technique[J]. 中国腐蚀与防护学报, 2016, 36(5): 450-456.
[11] Qiongyu ZHOU,Xiaofen WANG,Qingdong ZHONG,Cao WANG,Yifeng HU. Effect of pH Value on Structure and Corrosion Resistance of Electrodeposited Ni-W Alloy Coating[J]. 中国腐蚀与防护学报, 2016, 36(5): 457-462.
[12] Wenye LU,Dieyi CHEN,Burong CHEN,Tao TANG. Hexadecane-thiol Self-assembly Monolayers on Silver for Anti-tarnishing[J]. 中国腐蚀与防护学报, 2016, 36(2): 172-176.
[13] LUO Lili, FEI Jingyin, WANG Lei, LIN Xihua, WANG Shaolan. Alloying of Compositionally Modulated Cu/Ni Multilayer Films and Corrosion Performance of Cu-Ni Alloy Coatings[J]. 中国腐蚀与防护学报, 2014, 34(6): 523-531.
[14] LI Yuanyuan, DU Nan, SHU Weifa, WANG Shuaixing, ZHAO Qing. Electrodeposition Behavior of Zinc in Alkaline Zincate Electrolyte[J]. 中国腐蚀与防护学报, 2014, 34(1): 89-94.
[15] ZHANG Wuhua,FEI Jingyin,LUO Lili,LIN Xihua. High Speed Pulse Electro Plating Process of Nickel[J]. 中国腐蚀与防护学报, 2013, 33(4): 317-324.
No Suggested Reading articles found!