Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 746-754    DOI: 10.11902/1005.4537.2023.147
Current Issue | Archive | Adv Search |
Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel
LIU Chao, CHEN Tianqi, LI Xiaogang()
National Materials Corrosion and Protection Data Center, Institute of Advanced Materials & Technology, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(9516KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inclusions are inevitable metallurgical defects in steel that can significantly impact the corrosion resistance of materials by inducing local corrosion initiation. The mechanisms related with the initiation and development of inclusion-induced localized corrosion have been the subject of controversy in recent years. This paper provides a comprehensive review of the various mechanisms of inclusion-induced localized corrosion, including electrochemical corrosion, chemical dissolution, and electrochemical-chemical dissolution mechanisms. In addition, controlling the formation and behavior of inclusions is crucial for improving the corrosion resistance of steel, while the chemical composition, size and shape of the inclusions are the key influencing factors for inducing localized corrosion. Finally, the future research directions for the study of inclusions-induced local corrosion mechanism and the regulation of corrosion-resistant steel are discussed.

Key words:  inclusion      low alloy steel      localized corrosion      corrosion mechnism      corrosion resistance regulation     
Received:  08 May 2023      32134.14.1005.4537.2023.147
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52104319)
Corresponding Authors:  LI Xiaogang, E-mail: lixiaogang99@263.net   

Cite this article: 

LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 746-754.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.147     OR     https://www.jcscp.org/EN/Y2023/V43/I4/746

Fig.1  Linear scan results of LEIS for three metallurgical defects (a) [7], A, B and C being Si-rich inclusions, micropores and carbides, respectively, where the resistance at both A and B points is less than the substrate, whereas the resistance at C is greater than the substrate; mechanism diagram of pitting initiation and development induced by Y-S-O inclusions (b) [12], in which YS is preferentially dissolved as anodic phase and formed a corrosion microcouple with substrate and surface passivation film to induce local pitting initiation
Fig.2  SEM and CAAFM images of Al2O3(a), ZrO2-Ti2O3-Al2O3 (b) and (Re)2O2S-(Re) x S y -(Re, Zr, Ti)O x (c) and their corresponding height/current distribution diagrams, corrosion morphology of ZrO2-Ti2O3-Al2O3 and ((RE)2O2S-(RE) x S y -(RE,Zr,Ti)O x -(RE)AlO3 after soaking in simulated Xisha solution with pH=4.9 for 30 min (d), and KAM diagrams of Al2O3 and ZrO2-Ti2O3-Al2O3 (e). The high KAM indicates that the local plastic deformation of the steel matrix occurs around the inclusion which is difficult to deform, and the mechanical deformation will lead to the redistribution of the surface electrochemical heterogeneity [16~19]
Fig.3  Typical corrosion pits formed on Al-Ca-O-S inclusions after 24 h immersion in NS4 solution: (a) optical image, (b) 2D image, (c) three-dimensional profile, (d) height line, where the position of the cross-sectional profile is marked in Fig.3b as a red line [22], (e) schematic of dissolution kinetics of sulfide-oxide complex inclusions and the resulting local corrosion process: the original inclusions underwent the galvanic corrosion stage and the corrosion spreading stage, respectively [23]
Fig.4  Surface potential distribution of MnS (a), surface work function of different crystal faces of MnS (b), the results show that the work function of MnS is smaller than that of Fe matrix, and mechanism diagram of local corrosion induced by MnS (c), MnS is used as an anodic corrosion couple with steel substrate to form steady or metastable pitting pits under the synergistic effect of Cl-and S, and the corrosion product “S” shell covers the surface of pitting pits to form concentration difference cells, further promote the corrosion process [29]
Fig.5  Surface morphology (a), cross-sectional morphology (b), EBSD test region (c) and corresponding KAM plots (d) of Al2O3 [18]
Fig.6  SEM image and EDS results (a), TEM image and SAD result (b) of TiN inclusions, interface morphology between TiN inclusions and SiO2 (c), and XPS spectra of TiO2 2p3/2 and TiO2 2p1/2 peaks of passivation film formed on pure Ti sample (d) [25]
Fig.7  Composition distribution of active/inactive inclusions in the phase diagram of the Al2O3-MgO-CaO system (a) [45] and MgS (b), MgY2S4 (c), Y2O3 (d) and YS (e) energy band structure diagram [12]
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
2 Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
3 Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
doi: 10.5006/1837
4 Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
doi: 10.1038/415770a
5 Stewart J, Williams D E. The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions [J]. Corros. Sci., 1992, 33: 457
doi: 10.1016/0010-938X(92)90074-D
6 Suter T, Böhni H. A new microelectrochemical method to study pit initiation on stainless steels [J]. Electrochim. Acta, 1997, 42: 3275
doi: 10.1016/S0013-4686(70)01783-8
7 Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850
doi: 10.1016/j.corsci.2010.11.026
8 Park I J, Lee S M, Kang M, et al. Pitting corrosion behavior in advanced high strength steels [J]. J. Alloy. Compd., 2015, 619: 205
doi: 10.1016/j.jallcom.2014.08.243
9 Xue W, Li Z L, Xiao K, et al. Initial microzonal corrosion mechanism of inclusions associated with the precipitated (Ti, Nb)N phase of Sb-containing weathering steel [J]. Corros. Sci., 2020, 163: 108232
doi: 10.1016/j.corsci.2019.108232
10 Su H Y, Wei S C, Liang Y, et al. Pitting behaviors of low-alloy high strength steel in neutral 3.5 wt% NaCl solution based on in situ observations [J]. J. Electroanal. Chem., 2020, 863: 114056
doi: 10.1016/j.jelechem.2020.114056
11 Zheng S J, Wang Y J, Zhang B, et al. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels [J]. Acta Mater., 2010, 58: 5070
doi: 10.1016/j.actamat.2010.05.043
12 Hou Y H, Li T F, Li G Q, et al. Mechanism of Yttrium composite inclusions on the localized corrosion of pipeline steels in NaCl solution [J]. Micron, 2020, 130: 102820
doi: 10.1016/j.micron.2019.102820
13 Reformatskaya I I, Rodionova I G, Beilin Y A, et al. The effect of nonmetal inclusions and microstructure on local corrosion of carbon and low-alloyed steels [J]. Protect. Met., 2004, 40: 447
doi: 10.1023/B:PROM.0000043062.19272.c5
14 Andreatta F, Terryn H, de Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy [J]. Electrochim. Acta, 2004, 49: 2851
doi: 10.1016/j.electacta.2004.01.046
15 Zhang T Y, Li Y L, Li X, et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment [J]. Corros. Sci., 2022, 208: 110708
doi: 10.1016/j.corsci.2022.110708
16 Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
doi: 10.1016/j.corsci.2018.04.007
17 Liu C, Jiang Z H, Zhao J B, et al. Influence of rare earth metals on mechanisms of localised corrosion induced by inclusions in Zr-Ti deoxidised low alloy steel [J]. Corros. Sci., 2020, 166: 108463
doi: 10.1016/j.corsci.2020.108463
18 Liu C, Li X, Revilla R I, et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels [J]. Corros. Sci., 2021, 179: 109150
doi: 10.1016/j.corsci.2020.109150
19 Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel [J]. Corros. Sci., 2017, 129: 82
doi: 10.1016/j.corsci.2017.10.001
20 Kim S T, Jeon S H, Lee I S, et al. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel-Part 1 [J]. Corros. Sci., 2010, 52: 1897
doi: 10.1016/j.corsci.2010.02.043
21 Liu P, Zhang Q H, Li X R, et al. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64: 99
doi: 10.1016/j.jmst.2020.06.031
22 Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
doi: 10.1016/j.corsci.2018.11.007
23 Li G X, Wang L W, Wu H L, et al. Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment [J]. Corros. Sci., 2020, 174: 108815
doi: 10.1016/j.corsci.2020.108815
24 Liu C, Yuan H, Li X D, et al. Initiation mechanism of localized corrosion induced by Al2O3-MnS composite inclusion in low-alloy structural steel [J]. Metals, 2022, 12: 587
doi: 10.3390/met12040587
25 Liu C, Revilla R I, Li X, et al. New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel [J]. J. Mater. Sci. Technol., 2022, 124: 141
doi: 10.1016/j.jmst.2021.12.075
26 Zhang X W, Yang C F, Zhang L F. Effects of cooling rate and isothermal holding on the characteristics of MnS particles in high-carbon heavy rail steels [J]. Metall. Res. Technol., 2020, 117: 110
doi: 10.1051/metal/2020002
27 Vuillemin B, Philippe X, Oltra R, et al. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection [J]. Corros. Sci., 2003, 45: 1143
doi: 10.1016/S0010-938X(02)00222-6
28 Hastuty S, Nishikata A, Tsuru T. Pitting corrosion of Type 430 stainless steel under chloride solution droplet [J]. Corros. Sci., 2010, 52: 2035
doi: 10.1016/j.corsci.2010.02.031
29 Hu J Z, Ren Y, Zhang J, et al. Review on pitting corrosion of steel induced by MnS inclusions [J]. China Metall, 2022, 32(11): 18
胡锦榛, 任 英, 张 继 等. MnS夹杂物诱发钢材点蚀综述 [J]. 中国冶金, 2022, 32(11): 18
30 Eklund G S. Initiation of pitting at sulfide inclusions in stainless steel [J]. J. Electrochem. Soc., 1974, 121: 467
doi: 10.1149/1.2401840
31 Zhang H R, Wu H Y, Wang S L, et al. Pitting behavior of Fe-based amorphous alloy with sulfide inclusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 477
张浩然, 吴鸿燕, 王善林 等. 含硫化物夹杂的铁基非晶合金点蚀规律 [J]. 中国腐蚀与防护学报, 2021, 41: 477
doi: 10.11902/1005.4537.2020.148
32 Meng Q, Frankel G S, Colijn H O, et al. High-resolution characterization of the region around manganese sulfide inclusions in stainless steel alloys [J]. Corrosion, 2004, 60: 346
doi: 10.5006/1.3287741
33 Schmuki P, Hildebrand H, Friedrich A, et al. The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion [J]. Corros. Sci., 2005, 47: 1239
doi: 10.1016/j.corsci.2004.05.023
34 Chiba A, Muto I, Sugawara Y, et al. A microelectrochemical system for in situ high-resolution optical microscopy: morphological characteristics of pitting at MnS inclusion in stainless steel [J]. J. Electrochem. Soc., 2012, 159: C341
doi: 10.1149/2.054208jes
35 Chiba A, Muto I, Sugawara Y, et al. Pit initiation mechanism at MnS inclusions in stainless steel: synergistic effect of elemental sulfur and chloride ions [J]. J. Electrochem. Soc., 2013, 160: C511
doi: 10.1149/2.081310jes
36 Meng F J, Wang J Q, Han E-H, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water [J]. Corros. Sci., 2010, 52: 927
doi: 10.1016/j.corsci.2009.11.015
37 Hur D H, Han J H, Lee U C, et al. Microchemistry of Ti-carbonitrides and their role in the early stage of pit initiation of alloy 600 [J]. Corrosion, 2006, 62: 591
doi: 10.5006/1.3280673
38 Wang Y L, Yu W, Zhu R L, et al. Effect of complex inclusions on localized corrosion behavior in ferritic steel [J]. Steel Res. Int., 2023, 94: 2200719
doi: 10.1002/srin.v94.5
39 Verma N, Pistorius P C, Fruehan R J, et al. Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: part I. Background, experimental techniques and analysis methods [J]. Metall. Mater. Trans., 2011, 42B: 711
40 Kim K Y, Chung Y H, Hwang Y H, et al. Effects of calcium modification on the electrochemical and corrosion properties of weathering steel [J]. Corrosion, 2002, 58: 479
doi: 10.5006/1.3277638
41 Coletti B, Blanpain B, Vantilt S, et al. Observation of calcium aluminate inclusions at interfaces between Ca-treated, Al-killed steels and slags [J]. Metall. Mater. Trans., 2003, 34B: 533
42 Yang S F, Li J S, Wang Z F, et al. Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment [J]. Int. J. Miner. Metall. Mater., 2011, 18: 18
doi: 10.1007/s12613-011-0394-0
43 Wang Y H, Zhang X, Cheng L, et al. Correlation between active/inactive (Ca, Mg, Al)-O x -S y inclusions and localised marine corrosion of EH36 steels [J]. J. Mater. Res. Technol., 2021, 13: 2419
doi: 10.1016/j.jmrt.2021.06.030
44 Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
doi: 10.1016/j.corsci.2010.12.011
45 Zhu T W, Huang F, Liu J, et al. Effects of inclusion on corrosion resistance of weathering steel in simulated industrial atmosphere [J]. Anti-Corros. Methods Mater., 2016, 63: 490
doi: 10.1108/ACMM-05-2015-1538
46 Ma H C, Liu Z Y, Du C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide [J]. Corros. Sci., 2015, 100: 627
doi: 10.1016/j.corsci.2015.08.039
47 Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
doi: 10.11902/1005.4537.2020.211
48 Yue L J, Wang L M, Han J S. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel [J]. J. Rare Earths, 2010, 28: 952
doi: 10.1016/S1002-0721(09)60219-2
49 Hou Y H, Xiong G, Liu L L, et al. Effects of LaAlO3 and La2O2S inclusions on the initialization of localized corrosion of pipeline steels in NaCl solution [J]. Scr. Mater., 2020, 177: 151
doi: 10.1016/j.scriptamat.2019.10.025
50 Huang F, Li J, Geng R M, et al. Effect of rare earth on inclusion evolution and corrosion resistance of HRB400E steel [J]. Mater. Corros., 2023, 74: 53
[1] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[2] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[3] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[4] PENG Hao, CHENG Xiaoying, LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang. Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[5] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[6] ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[7] ZHU Yanshan, ZHANG Jiming, WU Fengjuan, QU Jinbo. Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel[J]. 中国腐蚀与防护学报, 2022, 42(1): 169-174.
[8] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[9] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[10] SHI Weining,YANG Shufeng,LI Jingshe. Correlation Between Cr-depleted Zone and Local Corrosion in Stainless Steels: A Review[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
[11] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[12] Yong HUANG, Shanlin WANG, Shuaixing WANG, Yubing GONG, Liming KE. Corrosion Resistance of Fe-based Bulk Metallic Glass with Sulfide Inclusions in HCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[13] Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[14] Penghui ZHANG, Kun PANG, Kangkang DING, Xiangfeng KONG, Xin PENG. Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
[15] Yongli WANG,Li MA,Liangyin XIONG,Shi LIU. Effect of Inclusions on Corrosion and Dissolution of Metallic Ions of Stainless Steel 304 in Simulated Tap Water[J]. 中国腐蚀与防护学报, 2016, 36(4): 328-334.
No Suggested Reading articles found!