|
|
Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating |
NI Yumeng1,2,3, YU Yingjie1, YAN Hui1,3, WANG Wei4, LI Ying1( ) |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.College of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou 412007, China 3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 4.Department of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China |
|
|
Abstract Abradable seal coatings is widely used in the field of aerospace industry, since it can improve the efficiency of the aero-engine. Due to its special structure and composition, abradable seal coatings would face severe corrosion failure problems. Therefore, the phase-selective dissolution reaction in the early stage of corrosion of the CuAl-NiC abradable seal coating in NaCl solution is simulated by means of finite element method (FEM). Morphology characterization and electrochemical test were conducted to determine the geometric dimensions and boundary conditions required for FEM. The FE simulation was then carried out, while the modeling results were compared with the free-corrosion potential of the coating measured by the polarization curve, and the dissolution results of the ICP-OES test to verify the reliability of the established model. Furthermore, by inputting the composition ratio and the electrochemical properties of substances of a newly designed coating into the established model, its corrosion resistance can be acquired, which will provide some insights for the design of abradable seal coatings.
|
Received: 30 September 2022
32134.14.1005.4537.2022.305
|
|
Fund: National Natural Science Foundation of China(51671198) |
Corresponding Authors:
LI Ying, E-mail: liying@imr.ac.cn
|
1 |
Li Z H, Zhang Z C, Ding L, et al. Microbial contamination and corrosion in aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1081
|
|
李征鸿, 张志超, 丁 磊 等. 飞机燃油系统的微生物污染与腐蚀 [J]. 中国腐蚀与防护学报, 2022, 42: 1081
doi: 10.11902/1005.4537.2021.329
|
2 |
Zhao H Y, Gao D L, Zhang T, et al. Microstructure and corrosion evolution of aerospace AA2024 Al-alloy thin wall structure produced through WAAM [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 621
|
|
赵海洋, 高多龙, 张童 等. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 621
doi: 10.11902/1005.4537.2021.149
|
3 |
Batailly A, Legrand M, Millecamps A, et al. Conjectural bifurcation analysis of the contact-induced vibratory response of an aircraft engine blade [J]. J. Sound Vib., 2015, 348: 239
doi: 10.1016/j.jsv.2015.03.005
|
4 |
Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
|
|
余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
|
5 |
Zhang F, Lan H, Huang C B, et al. Corrosion resistance of Ti3Al/BN abradable seal coating [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 1114
doi: 10.1007/s40195-014-0133-4
|
6 |
Rajendran R. Gas turbine coatings-an overview [J]. Eng. Fail. Anal., 2012, 26: 355
doi: 10.1016/j.engfailanal.2012.07.007
|
7 |
Legrand M, Pierre C, Cartraud P, et al. Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction [J]. J. Sound Vib., 2009, 319: 366
doi: 10.1016/j.jsv.2008.06.019
|
8 |
Wang H G. Criteria for analysis of abradable coatings [J]. Surf. Coat. Technol., 1996, 79: 71
doi: 10.1016/0257-8972(95)02443-3
|
9 |
Miller R A. Current status of thermal barrier coatings—An overview [J]. Surf. Coat. Technol., 1987, 30: 1
doi: 10.1016/0257-8972(87)90003-X
|
10 |
Mahesh R A, Jayaganthan R, Prakash S. Oxidation behavior of HVOF sprayed Ni-5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition [J]. Mater. Sci. Eng., 2008, 475A: 327
|
11 |
Borel M O, Nicoll A R, Schläpfer H W, et al. The wear mechanisms occurring in abradable seals of gas turbines [J]. Surf. Coat. Technol., 1989, 39: 117
|
12 |
Faraoun H I, Seichepine J L, Coddet C, et al. Modelling route for abradable coatings [J]. Surf. Coat. Technol., 2006, 200: 6578
doi: 10.1016/j.surfcoat.2005.11.105
|
13 |
Matějíček J, Kolman B, Dubský J, et al. Alternative methods for determination of composition and porosity in abradable materials [J]. Mater. Charact., 2006, 57: 17
doi: 10.1016/j.matchar.2005.12.004
|
14 |
Johnston R E, Evans W J. Freestanding abradable coating manufacture and tensile test development [J]. Surf. Coat. Technol., 2007, 202: 725
doi: 10.1016/j.surfcoat.2007.05.082
|
15 |
Sporer D, Refke A, Dratwinski M, et al. New high-temperature seal system for increased efficiency of gas turbines [J]. Seal. Technol., 2008, 2008: 9
|
16 |
Faraoun H I, Grosdidier T, Seichepine J L, et al. Improvement of thermally sprayed abradable coating by microstructure control [J]. Surf. Coat. Technol., 2006, 201: 2303
doi: 10.1016/j.surfcoat.2006.03.047
|
17 |
Fois N, Stringer J, Marshall M B. Adhesive transfer in aero-engine abradable linings contact [J]. Wear, 2013, 304: 202
doi: 10.1016/j.wear.2013.04.033
|
18 |
Mutasim Z, Hsu L, Wong E. Evaluation of plasma sprayed abradable coatings [J]. Surf. Coat. Technol., 1992, 54/55: 39
|
19 |
Rhys-Jones T N. Thermally sprayed coating systems for surface protection and clearance control applications in aero engines [J]. Surf. Coat. Technol., 1990, 43/44: 402
|
20 |
Cui Z Y, Ge F, Wang X. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
|
|
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
|
21 |
Wang D, Pan Q, Xia C. Corrosion and Protection of Battleplan [M]. Beijing: Aviation Industry Press, 2006
|
22 |
Lei B, Hu S N, Wang Z H, et al. Corrosion-detection and assessment methods for abradable sealing coatings [J]. Corros. Sci. Prot. Technol., 2017, 29: 651
|
|
雷 冰, 胡胜楠, 王祖华 等. 封严涂层腐蚀检测及评价方法研究 [J]. 腐蚀科学与防护技术, 2017, 29: 651
|
23 |
Alexopoulos N D, Dalakouras C J, Skarvelis P, et al. Accelerated corrosion exposure in ultra thin sheets of 2024 aircraft aluminium alloy for GLARE applications [J]. Corros. Sci., 2012, 55: 289
doi: 10.1016/j.corsci.2011.10.032
|
24 |
Vogelesang L B, Vlot A. Development of fibre metal laminates for advanced aerospace structures [J]. J. Mater. Process. Technol., 2000, 103: 1
doi: 10.1016/S0924-0136(00)00411-8
|
25 |
Zhang F, Xu C G, Lan H, et al. Corrosion behavior of an abradable seal coating system [J]. J. Therm. Spray Technol., 2014, 23: 1019
doi: 10.1007/s11666-014-0115-0
|
26 |
Lei B, Peng M X, Liu L, et al. Galvanic corrosion performance of An Al–BN abradable seal coating system in chloride solution [J]. Coatings, 2020, 11: 9
doi: 10.3390/coatings11010009
|
27 |
Lei B, Li M, Zhao Z X, et al. Corrosion mechanism of an Al-BN abradable seal coating system in chloride solution [J]. Corros. Sci., 2014, 79: 198
doi: 10.1016/j.corsci.2013.11.007
|
28 |
Ni Y M, Zhang F, Njoku D I, et al. Corrosion mechanism of CuAl-NiC abradable seal coating system—The influence of porosity, multiphase, and multilayer structure on the corrosion failure [J]. J. Mater. Sci. Technol., 2021, 88: 258
doi: 10.1016/j.jmst.2021.01.068
|
29 |
Sun W, Ouyang P X, Liu T, et al. Numerical Predictions of the influence of structure on thermal shock resistance of CuAl-polyester abradable sealing coating [J]. J. Therm. Spray Technol., 2022, 31: 485
doi: 10.1007/s11666-022-01332-0
|
30 |
Du S Y, Zhang Y, Meng M J, et al. The role of water transport in the failure of silicone rubber coating for implantable electronic devices [J]. Prog. Org. Coat., 2021, 159: 106419
|
31 |
Feickert A J, Croll S G. Failure of coatings over joints and gaps: finite-element models [J]. J. Coat. Technol. Res., 2018, 15: 281
doi: 10.1007/s11998-017-9986-6
|
32 |
Guo Y B, Lu X Q, Li W Y, et al. Interfacial stress and failure analysis for piston ring coatings under dry running condition [J]. Tribol. Trans., 2013, 56: 1027
doi: 10.1080/10402004.2013.798879
|
33 |
Liu R, Liu L, Meng F D, et al. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure [J]. Prog. Org. Coat., 2018, 123: 168
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|