Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 855-861    DOI: 10.11902/1005.4537.2022.305
Current Issue | Archive | Adv Search |
Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating
NI Yumeng1,2,3, YU Yingjie1, YAN Hui1,3, WANG Wei4, LI Ying1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.College of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou 412007, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
4.Department of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
Download:  HTML  PDF(4354KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Abradable seal coatings is widely used in the field of aerospace industry, since it can improve the efficiency of the aero-engine. Due to its special structure and composition, abradable seal coatings would face severe corrosion failure problems. Therefore, the phase-selective dissolution reaction in the early stage of corrosion of the CuAl-NiC abradable seal coating in NaCl solution is simulated by means of finite element method (FEM). Morphology characterization and electrochemical test were conducted to determine the geometric dimensions and boundary conditions required for FEM. The FE simulation was then carried out, while the modeling results were compared with the free-corrosion potential of the coating measured by the polarization curve, and the dissolution results of the ICP-OES test to verify the reliability of the established model. Furthermore, by inputting the composition ratio and the electrochemical properties of substances of a newly designed coating into the established model, its corrosion resistance can be acquired, which will provide some insights for the design of abradable seal coatings.

Key words:  abradable seal coating      galvanic corrosion      finite element      corrosion protection     
Received:  30 September 2022      32134.14.1005.4537.2022.305
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51671198)
Corresponding Authors:  LI Ying, E-mail: liying@imr.ac.cn   

Cite this article: 

NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 855-861.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.305     OR     https://www.jcscp.org/EN/Y2023/V43/I4/855

Fig.1  3D geometrical model of the interphase galvanic corrosion occurred inside the CuAl-NiC abradable seal coating for FE simulation
Fig.2  Local morphology of the CuAl-NiC abradable seal coating (a) and EDS patterns surface elements mapping of Cu (b), Al (c), Ni (d) and C (e)
Fig.3  Schematic diagrams of the distribution of the CuAl-NiC abradable seal coating (a, b) and finite element meshing for the interphase galvanic corrosion model (c)
Fig.4  XPS spectra and fitting curves for CuAl-NiC abradable seal coating: (a) Al, (b) Cu
Fig.5  Potentiodynamic polarization curves of pure Al, pure Cu, pure Ni and C
ElementEcorr / VSCEIcorr / μA·cm-2
Al-0.741.10
Cu-0.211.21
Ni-0.301.41
Graphite0.131.33
Table 1  Ecorr and Icorr of the pure Al, pure Cu, pure Ni, and graphite obtained from the polarization curves
Fig.6  Simulation results of the multiphase galvanic corrosion model: (a) distribution of the local corrosion potential, (b) distribution of the local corrosion current density
Fig.7  Potentiodynamic polarization curves of the CuAl-NiC abradable seal coating
Fig.8  Concentration of Al3+, Cu2+, and Ni2+ in the solution after the CuAl-NiC abradable seal coating is immersed for a while
ElementMass ratio %Mass gDensity g·cm-3Volume cm3Area cm2
Cu51518.95.733.2
Al552.71.851.5
Ni33338.93.712.4
C11112.095.263.0
Table 2  Parameters of each phase of the CuAl-NiC abradable seal coating
Fig.9  Schematic diagram of the phase distribution in the CuAl-NiC abradable seal coating
Fig.10  Simulation results of the improved multiphase galvanic corrosion model: (a) Distribution of the local corrosion potential, (b) Distribution of the local corrosion current density
1 Li Z H, Zhang Z C, Ding L, et al. Microbial contamination and corrosion in aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1081
李征鸿, 张志超, 丁 磊 等. 飞机燃油系统的微生物污染与腐蚀 [J]. 中国腐蚀与防护学报, 2022, 42: 1081
doi: 10.11902/1005.4537.2021.329
2 Zhao H Y, Gao D L, Zhang T, et al. Microstructure and corrosion evolution of aerospace AA2024 Al-alloy thin wall structure produced through WAAM [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 621
赵海洋, 高多龙, 张童 等. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 621
doi: 10.11902/1005.4537.2021.149
3 Batailly A, Legrand M, Millecamps A, et al. Conjectural bifurcation analysis of the contact-induced vibratory response of an aircraft engine blade [J]. J. Sound Vib., 2015, 348: 239
doi: 10.1016/j.jsv.2015.03.005
4 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
5 Zhang F, Lan H, Huang C B, et al. Corrosion resistance of Ti3Al/BN abradable seal coating [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 1114
doi: 10.1007/s40195-014-0133-4
6 Rajendran R. Gas turbine coatings-an overview [J]. Eng. Fail. Anal., 2012, 26: 355
doi: 10.1016/j.engfailanal.2012.07.007
7 Legrand M, Pierre C, Cartraud P, et al. Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction [J]. J. Sound Vib., 2009, 319: 366
doi: 10.1016/j.jsv.2008.06.019
8 Wang H G. Criteria for analysis of abradable coatings [J]. Surf. Coat. Technol., 1996, 79: 71
doi: 10.1016/0257-8972(95)02443-3
9 Miller R A. Current status of thermal barrier coatings—An overview [J]. Surf. Coat. Technol., 1987, 30: 1
doi: 10.1016/0257-8972(87)90003-X
10 Mahesh R A, Jayaganthan R, Prakash S. Oxidation behavior of HVOF sprayed Ni-5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition [J]. Mater. Sci. Eng., 2008, 475A: 327
11 Borel M O, Nicoll A R, Schläpfer H W, et al. The wear mechanisms occurring in abradable seals of gas turbines [J]. Surf. Coat. Technol., 1989, 39: 117
12 Faraoun H I, Seichepine J L, Coddet C, et al. Modelling route for abradable coatings [J]. Surf. Coat. Technol., 2006, 200: 6578
doi: 10.1016/j.surfcoat.2005.11.105
13 Matějíček J, Kolman B, Dubský J, et al. Alternative methods for determination of composition and porosity in abradable materials [J]. Mater. Charact., 2006, 57: 17
doi: 10.1016/j.matchar.2005.12.004
14 Johnston R E, Evans W J. Freestanding abradable coating manufacture and tensile test development [J]. Surf. Coat. Technol., 2007, 202: 725
doi: 10.1016/j.surfcoat.2007.05.082
15 Sporer D, Refke A, Dratwinski M, et al. New high-temperature seal system for increased efficiency of gas turbines [J]. Seal. Technol., 2008, 2008: 9
16 Faraoun H I, Grosdidier T, Seichepine J L, et al. Improvement of thermally sprayed abradable coating by microstructure control [J]. Surf. Coat. Technol., 2006, 201: 2303
doi: 10.1016/j.surfcoat.2006.03.047
17 Fois N, Stringer J, Marshall M B. Adhesive transfer in aero-engine abradable linings contact [J]. Wear, 2013, 304: 202
doi: 10.1016/j.wear.2013.04.033
18 Mutasim Z, Hsu L, Wong E. Evaluation of plasma sprayed abradable coatings [J]. Surf. Coat. Technol., 1992, 54/55: 39
19 Rhys-Jones T N. Thermally sprayed coating systems for surface protection and clearance control applications in aero engines [J]. Surf. Coat. Technol., 1990, 43/44: 402
20 Cui Z Y, Ge F, Wang X. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
21 Wang D, Pan Q, Xia C. Corrosion and Protection of Battleplan [M]. Beijing: Aviation Industry Press, 2006
22 Lei B, Hu S N, Wang Z H, et al. Corrosion-detection and assessment methods for abradable sealing coatings [J]. Corros. Sci. Prot. Technol., 2017, 29: 651
雷 冰, 胡胜楠, 王祖华 等. 封严涂层腐蚀检测及评价方法研究 [J]. 腐蚀科学与防护技术, 2017, 29: 651
23 Alexopoulos N D, Dalakouras C J, Skarvelis P, et al. Accelerated corrosion exposure in ultra thin sheets of 2024 aircraft aluminium alloy for GLARE applications [J]. Corros. Sci., 2012, 55: 289
doi: 10.1016/j.corsci.2011.10.032
24 Vogelesang L B, Vlot A. Development of fibre metal laminates for advanced aerospace structures [J]. J. Mater. Process. Technol., 2000, 103: 1
doi: 10.1016/S0924-0136(00)00411-8
25 Zhang F, Xu C G, Lan H, et al. Corrosion behavior of an abradable seal coating system [J]. J. Therm. Spray Technol., 2014, 23: 1019
doi: 10.1007/s11666-014-0115-0
26 Lei B, Peng M X, Liu L, et al. Galvanic corrosion performance of An Al–BN abradable seal coating system in chloride solution [J]. Coatings, 2020, 11: 9
doi: 10.3390/coatings11010009
27 Lei B, Li M, Zhao Z X, et al. Corrosion mechanism of an Al-BN abradable seal coating system in chloride solution [J]. Corros. Sci., 2014, 79: 198
doi: 10.1016/j.corsci.2013.11.007
28 Ni Y M, Zhang F, Njoku D I, et al. Corrosion mechanism of CuAl-NiC abradable seal coating system—The influence of porosity, multiphase, and multilayer structure on the corrosion failure [J]. J. Mater. Sci. Technol., 2021, 88: 258
doi: 10.1016/j.jmst.2021.01.068
29 Sun W, Ouyang P X, Liu T, et al. Numerical Predictions of the influence of structure on thermal shock resistance of CuAl-polyester abradable sealing coating [J]. J. Therm. Spray Technol., 2022, 31: 485
doi: 10.1007/s11666-022-01332-0
30 Du S Y, Zhang Y, Meng M J, et al. The role of water transport in the failure of silicone rubber coating for implantable electronic devices [J]. Prog. Org. Coat., 2021, 159: 106419
31 Feickert A J, Croll S G. Failure of coatings over joints and gaps: finite-element models [J]. J. Coat. Technol. Res., 2018, 15: 281
doi: 10.1007/s11998-017-9986-6
32 Guo Y B, Lu X Q, Li W Y, et al. Interfacial stress and failure analysis for piston ring coatings under dry running condition [J]. Tribol. Trans., 2013, 56: 1027
doi: 10.1080/10402004.2013.798879
33 Liu R, Liu L, Meng F D, et al. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure [J]. Prog. Org. Coat., 2018, 123: 168
[1] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[2] LIAN Yancheng, LIANG Fuyuan, HE Jianchao, LI Jin, WU Junwei, LENG Xuesong. Research Progress on Preparation Process of Superhydrophobic Polytetrafluoroethylene[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.
[3] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[4] LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[5] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[6] WANG Yuxin, WU Bo, DAI Leyang, HU Kefeng, WU Jianhua, YANG Yang, YAN Fulei, ZHANG Xianhui. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[7] TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[8] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[9] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[10] DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[11] WEN Jiaxin, ZHANG Xin, LIU Yunxia, ZHOU Yongfu, LIU Kejian. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[12] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[13] CAI Jianmin, GUAN Lei, LI Yu. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[14] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[15] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
No Suggested Reading articles found!