Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 209-219    DOI: 10.11902/1005.4537.2022.140
Current Issue | Archive | Adv Search |
Research Progress on Hydrogen Permeability Behavior of Pipeline Steel
YAO Chan1,2, CHEN Jian1(), MING Hongliang1, WANG Jianqiu1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Nation Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(1916KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Currently it is one of the most economical and effective ways to deliver hydrogen by mixing gaseous hydrogen into the existing natural gas pipeline network, but the compatibility of pipelines with the delivered hydrogen must be paid close attention. After natural gas is mixed with hydrogen, the mixed hydrogen can enter into the pipelines via a series of processes, including hydrogen adsorption and diffusion. The entered hydrogen plays decisive roles in influencing the service performance of pipeline steel, standing out the importance of studying the hydrogen permeation behavior of pipeline steel. In this paper, the research progress on the hydrogen permeation behavior of pipeline steel has been reviewed in aspects of research methods and key factors influencing hydrogen permeation of pipeline steel.

Key words:  pipeline steel      hydrogen permeability      diffusion      diffusion coefficient     
Received:  07 May 2022      32134.14.1005.4537.2022.140
ZTFLH:  TG172  
Fund: National Key R&D Program of China(2021YFB4001601);Hundred Talent Project(E155F207)
About author:  CHEN Jian, E-mail: jchen@imr.ac.cn

Cite this article: 

YAO Chan, CHEN Jian, MING Hongliang, WANG Jianqiu. Research Progress on Hydrogen Permeability Behavior of Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 209-219.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.140     OR     https://www.jcscp.org/EN/Y2023/V43/I2/209

Fig.1  Hydrogen permeation curves of X70 (a), X80 (b) and X100 (c) steels in simulated seawater at different cathodic potentials, plots of hydrogen concentration and HE index against applied potential (d) (solid symbols show hydrogen concentration, and open symbols show HE index)[34]
SteelCharging mediumSolutionImA·cm-2MicrostructureMethodD10-6 cm2·s-1C10-5 mol·cm-3
X52[38]NACE+H2S---------tg1.912.72
4.393.67
2.812.40
X65[39]NACE+H2S0.1 mol/L NaOH0.5DP/AF/B,MAtb4-9.41.3-2.8
X65[40]10 mmol/L NaHCO30.1 mol/L NaOHF+Ptg0.9240.20
Fourier0.8640.22
Laplace0.9460.20
X70[41]0.1 mol/L NaOH0.1 mol/L NaOHPF+P+Mtg0.73-0.79
X70[26]Surface0.5 mol/L H2SO4+ 3 g/L NH4SCN0.1 mol/L NaOH5AF+PF+QF+Btg0.466±0.1215.68±0.13
Middle0.701±0.1210.41±0.13
X80[37]BM0.24 MPa H2+0.20 MPa CO2+11.56 MPa N20.1 mol/L NaOHMF+AFFourier3.3020.0153
WMAF+PF5.3150.0121
CGHAZBF+GB5.4770.0119
X80[42]0.5 mol/L H2SO40.1 mol/L NaOH10PF+BF+M/Atg0.22.6
X80[43]NACE+H2S0.1 mol/L NaOHAF+M/Atg0.5114.10
PF+GB (air cooled)0.1956.61
M+RA (quenched)0.1596.86
X90[44]0.5 mol/L H2SO4+ 1.85 mmol/L Na4P2O70.2 mol/L NaOH10-30QPF+GB+LB+M/Atg0.99-2.501.87-2.71
X100[32]0.5 mol/L H2SO4+ 250 mg/L As2O30.1 mol/L NaOH20B+Ftg0.010413.4
Table 1  Summary of hydrogen permeation parameters of several pipeline steels
Fig.2  Concentration profile of hydrogen in X80 steel with oxide scale[47]
Type of trapBinding energy / kJ·mol-1
Grain boundary18.20-19.68
Dislocation

26.8-34.5

59.9 (Deep site)

Void29.1
Ferrite/cementite[55,56]65.0-66.3
TiC[57]

46-59 (Coherent)

68-116 (Incoherent)

NbC[58]

24-44 (Coherent)

62-71 (Incoherent)

MnS[59]72
Table 2  Binding energies of typical hydrogen traps in steels
Fig.3  Schematic showing various hydrogen trapping sites in steels[54]
[1] Shang J, Lu Y H, Zheng J Y, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures [J]. Chem. Ind. Eng. Prog., 2021, 40: 5499
(尚娟, 鲁仰辉, 郑津洋 等. 掺氢天然气管道输送研究进展和挑战 [J]. 化工进展, 2021, 40: 5499)
[2] Jin X, Zhuang Y X, Wang H, et al. Feasibility analysis research on abandoning wind and solar energy with hydrogen energy storage technology [J]. Electrotech. Electr., 2019, (4): 63
(金雪, 庄雨轩, 王辉 等. 氢储能解决弃风弃光问题的可行性分析研究 [J]. 电工电气, 2019, (4): 63)
[3] Witkowski A, Rusin A, Majkut M, et al. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines [J]. Int. J. Pres. Vessels Pip., 2018, 166: 24
[4] Pluvinage G, Capelle J, Meliani M H. Pipe networks transporting hydrogen pure or blended with natural gas, design and maintenance [J]. Eng. Fail. Anal., 2019, 106: 104164
doi: 10.1016/j.engfailanal.2019.104164
[5] Wu X, Zhang H F, Yang M, et al. From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels [J]. Int. J. Hydrogen Energy, 2022, 47: 8071
doi: 10.1016/j.ijhydene.2021.12.108
[6] Chen S Y, Long H Y, Li T L, et al. Discussion on blending hydrogen into natural gas pipeline networks [J]. Nat. Gas Oil, 2020, 38(6): 22
(陈石义, 龙海洋, 李天雷 等. 天然气管道掺氢探讨 [J]. 天然气与石油, 2020, 38(6): 22)
[7] Barrett S. McPhy energy role in french power-to-gas GRHYD programme [J]. Fuel Cells Bull., 2014, 2014: 9
[8] Briottet L, Moro I, Lemoine P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations [J]. Int. J. Hydrogen Energy, 2012, 37: 17616
doi: 10.1016/j.ijhydene.2012.05.143
[9] Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012, 59: 1
doi: 10.1016/j.corsci.2012.01.028
[10] Zhou D J, Li T T, Huang D W, et al. The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel [J]. Int. J. Hydrogen Energy, 2021, 46: 7402
doi: 10.1016/j.ijhydene.2020.11.267
[11] Xie P, Wu Y, Li C J, et al. Research progress on pipeline transportation technology of hydrogen-mixed natural gas [J]. Oil Gas Storage Transport., 2021, 40: 361
(谢萍, 伍奕, 李长俊 等. 混氢天然气管道输送技术研究进展 [J]. 油气储运, 2021, 40: 361)
[12] Huang M, Wu Y, Wen X Z, et al. Feasibility analysis of hydrogen transport in natural gas pipeline [J]. Gas Heat, 2013, 33(4): 39
(黄明, 吴勇, 文习之 等. 利用天然气管道掺混输送氢气的可行性分析 [J]. 煤气与热力, 2013, 33(4): 39)
[13] Huang F, Qu Y M, Deng Z J, et al. Pitting electrochemical behaviors of different microstructure X80 steel in high pH soil simulative solution [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 29
(黄峰, 曲炎淼, 邓照军 等. 不同组织X80钢在高pH土壤模拟溶液中的点蚀电化学行为 [J]. 中国腐蚀与防护学报, 2010, 30: 29)
[14] Liu Z Y, Zhai G L, Du C W, et al. SCC of X70 pipeline steel in Yingtan acid soil environment [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2008, 40(2): 76
(刘智勇, 翟国丽, 杜翠薇 等. X70钢在鹰潭酸性土壤中的应力腐蚀行为 [J]. 四川大学学报 (工程科学版), 2008, 40(2): 76)
[15] Liu Z Y, Du C W, Li X G, et al. Characteristic of X70 pipeline steel in the Ku'erle soil environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 46
(刘智勇, 杜翠薇, 李晓刚 等. X70钢在库尔勒土壤环境中的腐蚀特征 [J]. 中国腐蚀与防护学报, 2010, 30: 46)
[16] Li X D, Liu J H, Sun J B, et al. Effect of microstructural aspects in the heat-affected zone of high strength pipeline steels on the stress corrosion cracking mechanism: part I. In acidic soil environment [J]. Corros. Sci., 2019, 160: 108167
doi: 10.1016/j.corsci.2019.108167
[17] Liao Q Y, Chen Z G. The safety research on blending hydrogen into natural gas pipeline [J]. Urban Gas, 2021, (4): 19
(廖倩玉, 陈志光. 天然气管道掺氢输送安全问题研究现状 [J]. 城市燃气, 2021, (4): 19)
[18] Li S Y, Hu R S, Zhao W M, et al. Hydrogen adsorption and diffusion on steel surface [J]. Surf. Technol., 2020, 49(8): 15
(李守英, 胡瑞松, 赵卫民 等. 氢在钢铁表面吸附以及扩散的研究现状 [J]. 表面技术, 2020, 49(8): 15)
[19] Feng H, Chi Q, Ji L K, et al. Research and development of hydrogen embrittlement of pipeline steel [J]. Corros. Sci. Prot. Technol., 2017, 29: 318
(封辉, 池强, 吉玲康 等. 管线钢氢脆研究现状及进展 [J]. 腐蚀科学与防护技术, 2017, 29: 318)
[20] Qi Y M, Luo H Y, Zheng S Q, et al. Comparison of tensile and impact behavior of carbon steel in H2S environments [J]. Mater. Des., 2014, 58: 234
doi: 10.1016/j.matdes.2014.01.065
[21] Tiwari G P, Bose A, Chakravartty J K, et al. A study of internal hydrogen embrittlement of steels [J]. Mater. Sci. Eng., 2000, 286A: 269
[22] Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals [J]. Mater. China, 2018, 37: 215
(解德刚, 李蒙, 单智伟. 氢与金属的微观交互作用研究进展 [J]. 中国材料进展, 2018, 37: 215)
[23] Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 7
(褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 7)
[24] Devanathan M A V, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium [J]. Proc. Roy. Soc., 1962, 270A: 90
[25] ZHAO D P. Study on hydrogen permeation and hydrogen embrittlement of X80 pipeline steel and its HAZ caused by cathodic protection [D]: Qingdao: China University of Petroleum (East China), 2014
(赵大朋. 阴极保护下X80钢及焊接影响区的氢渗透行为和氢脆敏感性研究 [D]. 青岛: 中国石油大学(华东), 2014)
[26] Thomas A, Szpunar J A. Hydrogen diffusion and trapping in X70 pipeline steel [J]. Int. J. Hydrogen Energy, 2020, 45: 2390
doi: 10.1016/j.ijhydene.2019.11.096
[27] Ichitani K, Kuramoto S, Kanno M. Quantitative evaluation of detection efficiency of the hydrogen microprint technique applied to steel [J]. Corros. Sci., 2003, 45: 1227
doi: 10.1016/S0010-938X(02)00218-4
[28] Peng X H. Research on hydrogen induced cracking behaviors of different microstructure pipeline steels [D]. Wuhan: Wuhan University of Science and Technology, 2013
(彭先华. 不同微观结构管线钢氢致开裂 (HIC) 行为研究 [D]. 武汉: 武汉科技大学, 2013)
[29] Choo W Y. Effect of cathodic charging current density on the apparent hydrogen diffusivity through pure iron [J]. J. Mater. Sci., 1984, 19: 2633
doi: 10.1007/BF00550819
[30] Archer M D, Grant N C. Achievable boundary conditions in potentiostatic and galvanostatic hydrogen permeation through palladium and nickel foils [J]. Proc. Roy. Soc., 1984, 395A: 165
[31] Dong C F, Xiao K, Liu Z Y, et al. Hydrogen induced cracking of X80 pipeline steel [J]. Int. J. Miner. Metall. Mater., 2010, 17: 579
doi: 10.1007/s12613-010-0360-2
[32] Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrogen Energy, 2009, 34: 9879
doi: 10.1016/j.ijhydene.2009.09.090
[33] Han Y D, Jing H Y, Xu L Y. Welding heat input effect on the hydrogen permeation in the X80 steel welded joints [J]. Mater. Chem. Phys., 2012, 132: 216
doi: 10.1016/j.matchemphys.2011.11.036
[34] Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
doi: 10.1016/j.corsci.2017.11.013
[35] Zhang T M, Zhao W M, Deng Q S, et al. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen [J]. Int. J. Hydrogen Energy, 2017, 42: 25102
doi: 10.1016/j.ijhydene.2017.08.081
[36] Zhao W M, Yang M, Zhang T M, et al. Study on hydrogen enrichment in X80 steel spiral welded pipe [J]. Corros. Sci., 2018, 133: 251
doi: 10.1016/j.corsci.2018.01.011
[37] Zhao W M, Zhang T M, Zhao Y J, et al. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment [J]. Corros. Sci., 2016, 111: 84
doi: 10.1016/j.corsci.2016.04.029
[38] Wu R H. Study on hydrogen induced cracking sensitivity of X52 pipeline steel [J]. Coal Technol., 2017, 36: 332
(吴瑞红. X52管线钢的HIC敏感性研究 [J]. 煤炭技术, 2017, 36: 332)
[39] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel [J]. Corros. Sci., 2008, 50: 1865
doi: 10.1016/j.corsci.2008.03.007
[40] Cheng Y. Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking [J]. Int. J. Hydrogen Energy, 2007, 32: 1269
doi: 10.1016/j.ijhydene.2006.07.018
[41] Olden V, Alvaro A, Akselsen O M. Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-Experiments and FE simulations [J]. Int. J. Hydrogen Energy, 2012, 37: 11474
doi: 10.1016/j.ijhydene.2012.05.005
[42] Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
doi: 10.1016/j.corsci.2010.12.011
[43] Huang F, Li X G, Liu J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel [J]. J. Mater. Sci., 2011, 46: 715
doi: 10.1007/s10853-010-4799-3
[44] Li K, Wu W, Hu H J, et al. Hydrogen diffusion characteristics in X90 pipeline steel [J]. Corros. Prot., 2016, 37: 279
(李康, 武玮, 胡海军 等. 氢在X90管线钢中的扩散特性 [J]. 腐蚀与防护, 2016, 37: 279)
[45] Hu X J, Li P J, Wang Y K. The study of behavour of hydrogen diffusion and trapping in Armco-Fe—Ⅰ. diffusion coefficient of hydrogen in well-annealed Armco-Fe [J]. Jiangxi Sci., 1990, 8(3): 7
(胡学军, 李培基, 王仪康. 工业纯铁中氢扩散及捕获行为研究—Ⅰ. 完全退火工业纯铁中氢的扩散系数 [J]. 江西科学, 1990, 8(3): 7)
[46] Modiano S, Carreño J A V, Fugivara C S, et al. Changes on iron electrode surface during hydrogen permeation in borate buffer solution [J]. Electrochim. Acta, 2008, 53: 3670
doi: 10.1016/j.electacta.2007.11.077
[47] Zhang T M, Zhao W M, Zhao Y J, et al. Effects of surface oxide films on hydrogen permeation and susceptibility to embrittlement of X80 steel under hydrogen atmosphere [J]. Int. J. Hydrogen Energy, 2018, 43: 3353
doi: 10.1016/j.ijhydene.2017.12.170
[48] Li B B, Zhao W M, Li S Y, et al. Effect of oxidation temperature on structure and hydrogen-penetration resistance of X80 steel oxide film [J]. Trans. Mater. Heat Treat., 2020, 41(10): 86
(李贝贝, 赵卫民, 李守英 等. 氧化温度对X80钢氧化膜结构及阻氢性能的影响 [J]. 材料热处理学报, 2020, 41(10): 86)
[49] Li W W, Feng Y R, Gao H L. Study on the feature of X80 pipeline steel microstructural morphologies [J]. Pet. Tubular Goods Instrum., 2015, 1(1): 36
(李为卫, 冯耀荣, 高惠临. X80管线钢不同组织形态的显微结构特征研究 [J]. 石油管理与仪器, 2015, 1(1): 36)
[50] Turk A, Pu S D, Bombač D, et al. Quantification of hydrogen trapping in multiphase steels: part II-Effect of austenite morphology [J]. Acta Mater., 2020, 197: 253
doi: 10.1016/j.actamat.2020.07.039
[51] Sun Y H, Frank Cheng Y. Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review [J]. Eng. Fail. Anal., 2022, 133: 105985
doi: 10.1016/j.engfailanal.2021.105985
[52] Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
(袁玮, 黄峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536)
[53] Findley K O, O'Brien M K, Nako H. Critical Assessment 17: mechanisms of hydrogen induced cracking in pipeline steels [J]. Mater. Sci. Technol., 2015, 31: 1673
doi: 10.1080/02670836.2015.1121017
[54] Liu S G, Zhou Y, Wang Z, et al. Progress of detection techniques for hydrogen mapping in steel [J]. Surf. Technol., 2020, 49(8): 1
(刘神光, 周耀, 王正 等. 钢中氢分布检测技术进展 [J]. 表面技术, 2020, 49(8): 1)
[55] Takai K, Watanuki R. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels [J]. ISIJ Int., 2003, 43: 520
doi: 10.2355/isijinternational.43.520
[56] Kim J S, Lee Y H, Lee D L, et al. Microstructural influences on hydrogen delayed fracture of high strength steels [J]. Mater. Sci. Eng., 2009, 505A: 105
[57] Wei F G, Hara T, Tsuzaki K. Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum [J]. Metall. Mater. Trans., 2004, 35B: 587
[58] Wallaert E, Depover T, Arafin M, et al. Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates [J]. Metall. Mater. Trans., 2014, 45A: 2412
[59] Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels [J]. Metall. Mater. Trans., 2001, 32A: 339
[60] Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metall., 1970, 18: 147
doi: 10.1016/0001-6160(70)90078-7
[61] Chen Y X, Chang Q G. Effect of traps on diffusivity of hydrogen in 20g clean steel [J]. Acta Metall. Sin., 2011, 47: 548
(陈业新, 常庆刚. 20g纯净钢中氢陷阱对氢扩散系数的作用 [J]. 金属学报, 2011, 47: 548)
doi: 10.3724/SP.J.1037.2010.00610
[62] Lv X Q, Chen Y X. Effect of hydrogen traps on diffusion of hydrogen in SM490B clean steel [J]. Shanghai Met., 2013, 35(5): 14
(吕学奇, 陈业新. 氢陷阱对纯净钢SM490B中氢扩散行为的作用 [J]. 上海金属, 2013, 35(5): 14)
[63] Zhao R, Chen Y X. Hydrogen diffusion in Q960 clean steel [J]. J. Shanghai Univ. (Nat. Sci.), 2013, 19: 61
(赵荣, 陈业新. 氢在Q960纯净钢中的扩散 [J]. 上海大学学报 (自然科学版), 2013, 19: 61)
[64] Xiao H, Huang F, Peng Z X, et al. Sequential kinetic analysis of the influences of non-metallic inclusions on hydrogen diffusion and trapping in high-strength pipeline steel with Al-Ti deoxidisation and Mg treatment [J]. Corros. Sci., 2022, 195: 110006
doi: 10.1016/j.corsci.2021.110006
[65] Ren X C, Chu W Y, Li J X, et al. Effect of MnS inclusions on hydrogen diffusion in steel [J]. J. Univ. Sci. Technol. Beijing, 2007, 29: 232
(任学冲, 褚武扬, 李金许 等. MnS夹杂对钢中氢扩散行为的影响 [J]. 北京科技大学学报, 2007, 29: 232)
[66] Brass A M, Chêne J. Influence of tensile straining on the permeation of hydrogen in low alloy Cr-Mo steels [J]. Corros. Sci., 2006, 48: 481
doi: 10.1016/j.corsci.2005.01.007
[67] He Z R. Study on hydrogen permeation behavior of X80 pipeline steel caused by cathodic protection and stress [D]. Qingdao: China University of Petroleum (East China), 2014
(何枝容. X80钢在阴极保护和应力耦合条件下的氢渗透行为研究 [D]. 青岛: 中国石油大学 (华东), 2014)
[68] Zheng C B, Jiang H K, Huang Y L. Hydrogen permeation behaviour of X56 steel in simulated atmospheric environment under loading [J]. Corros. Eng. Sci. Technol., 2011, 46: 365
doi: 10.1179/147842209X12559428167689
[69] Kim H J, Lee M G. Analysis of hydrogen trapping behaviour in plastically deformed quenching and partitioning steel in relation to microstructure evolution by phase transformation [J]. J. Alloy. Compd., 2022, 904: 164018
doi: 10.1016/j.jallcom.2022.164018
[70] Zafra A, Belzunce J, Rodríguez C. Hydrogen diffusion and trapping in 42CrMo4 quenched and tempered steel: influence of quenching temperature and plastic deformation [J]. Mater. Chem. Phys., 2020, 255: 123599
doi: 10.1016/j.matchemphys.2020.123599
[71] Sun Y H, Cheng Y F. Hydrogen permeation and distribution at a high-strength X80 steel weld under stressing conditions and the implication on pipeline failure [J]. Int. J. Hydrogen Energy, 2021, 46: 23100
doi: 10.1016/j.ijhydene.2021.04.115
[72] Zhou C S, Luan X F, Wang Z, et al. Study on the hydrogen permeation behaviour of X80 pipeline steel in medium with carbon dioxide [J]. J. Zhejiang Univ. Technol., 2018, 46: 458
(周成双, 栾晓飞, 王铮 等. CO2环境对X80管线钢氢渗透行为的影响 [J]. 浙江工业大学学报, 2018, 46: 458)
[73] Huang F, Cheng P, Zhao X Y, et al. Effect of sulfide films formed on X65 steel surface on hydrogen permeation in H2S environments [J]. Int. J. Hydrogen Energy, 2017, 42: 4561
doi: 10.1016/j.ijhydene.2016.10.130
[74] Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
doi: 10.1016/j.corsci.2012.10.016
[75] Ma H C, Zagidulin D, Goldman M, et al. Influence of iron oxides and calcareous deposits on the hydrogen permeation rate in X65 steel in a simulated groundwater [J]. Int. J. Hydrogen Energy, 2021, 46: 6669
doi: 10.1016/j.ijhydene.2020.11.129
[76] Slifka A J, Drexler E S, Nanninga N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corros. Sci., 2014, 78: 313
doi: 10.1016/j.corsci.2013.10.014
[77] Jiang Q M, Zhang X Q. Contrastive analysis of ASME standards for route design of hydrogen and natural gas long-distance transportation pipeline [J]. Pres. Vessel Technol., 2015, 32(8): 44
(蒋庆梅, 张小强. 氢气与天然气长输管道线路设计ASME标准对比分析 [J]. 压力容器, 2015, 32(8): 44)
[78] An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. Int. J. Hydrogen Energy, 2017, 42: 15669
doi: 10.1016/j.ijhydene.2017.05.047
[79] An T, Zheng S Q, Peng H T, et al. Synergistic action of hydrogen and stress concentration on the fatigue properties of X80 pipeline steel [J]. Mater. Sci. Eng., 2017, 700A: 321
[80] Zhang S, Li J, An T, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation [J]. Int. J. Hydrogen Energy, 2021, 46: 20621
doi: 10.1016/j.ijhydene.2021.03.183
[1] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[2] PENG Hao, CHENG Xiaoying, LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang. Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[3] LI Kexuan, SONG Longfei, LI Xiaorong. Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[4] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[5] LI Ping. Research on Initial Corrosion Behavior of X60 Pipeline Steel in Simulated Tidal Zone[J]. 中国腐蚀与防护学报, 2022, 42(2): 338-344.
[6] DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[7] ZHU Yanshan, ZHANG Jiming, WU Fengjuan, QU Jinbo. Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel[J]. 中国腐蚀与防护学报, 2022, 42(1): 169-174.
[8] GAO Haodong, CUI Yu, LIU Li, MENG Fandi, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[9] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[10] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[11] GONG Ke, WU Ming, ZHANG Sheng. Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[12] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[13] WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[14] LV Xianghong, MA Xiaofeng, HU Zhaowei, LI Yuanyuan, WANG Chen. Corrosion Behavior of T/S-52K Straight Seam Pipeline Steel in Solutions of Different NaCl Concentration[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[15] SUN Weisong, YU Sirong, GAO Song, YAO Xinkuan, XU Hailiang, QIAN Bing, WANG Bingzi. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
No Suggested Reading articles found!