Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 338-344    DOI: 10.11902/1005.4537.2021.150
Current Issue | Archive | Adv Search |
Research on Initial Corrosion Behavior of X60 Pipeline Steel in Simulated Tidal Zone
LI Ping()
PipeChina Network Corporation Eastern Oil Storage and Transportation Co. Ltd. , Xuzhou 221000, China
Download:  HTML  PDF(2623KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In an experiment tank of simulated tidal zone, the variation of corrosion behavior of X60 pipeline steel with the tidal water fluctuations at different monitoring positions was characterized by means of corrosion morphology observation, corrosion product analysis, and in-situ open-circuit potential monitoring. The results show that the corrosion behavior of pipeline steel is different at different positions in tidal zone. The corrosion rate in the middle and low tide areas is faster than that in the highest and lowest tide areas. With the decrease of tidal level, the open circuit potential decreases continuously. The cathodic process in the highest tide zone is mainly controlled by oxygen reduction. The cathodic process in the middle and low tide zone is controlled by rust reduction during high tide, and it is controlled by oxygen reduction during ebb tide. The change process of open-circuit potential in the lowest tide zone has nothing to do with tide fluctuation.

Key words:  X60 pipeline steel      laboratory simulation      tidal corrosion      open-circuit potential      dry wet alternation     
Received:  29 June 2021     
ZTFLH:  TG172.5  
Corresponding Authors:  LI Ping     E-mail:  784067690@qq.com
About author:  LI Ping, E-mail: 784067690@qq.com

Cite this article: 

LI Ping. Research on Initial Corrosion Behavior of X60 Pipeline Steel in Simulated Tidal Zone. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 338-344.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.150     OR     https://www.jcscp.org/EN/Y2022/V42/I2/338

Fig.1  Schematic diagram of the open-circuit potential monitoring: (a) reference electrode, (b) monitoring positions, (1) sponge probe, (2) cork, (3) seawater, (4) salt bridge, (5) SCE, (6) saturated KCl solution, (7) valve
Fig.2  Microscopic corrosion morphology of X60 pipeline steel at position 1 (a), position 2 (b), position 3 (c) and position 4 (d)
Fig.3  XRD results of the rust phase composition of the steels after being exposed in the experimental trough at position 1 (a), position 2 (b), position 3 (c) and position 4 (d)
Fig.4  Corrosion rate change results of four test positions after tidal corrosion for 30 d
Fig.5  Curve of the steel Open-circuit potential with 0~2 d (a), 8~10 d (b), 18~20 d (c) and 28~30 d (d)
Fig.6  Curves of the X60 pipeline steel open-circuit potential with change of tide on the 30 d
1 Wang H H, Liu G H. Statistics and analysis of subsea pipeline accidents of CNOOC [J]. China Offshore Oil Gas, 2017, 29(5): 157
王红红, 刘国恒. 中国海油海底管道事故统计及分析 [J]. 中国海上油气, 2017, 29(5): 157
2 Xia L T, Wang L C, Huang G Q. Present status of research on sea-water corrosion of metal in China [J]. China Found. Mach. Technol., 2002, (6): 1
夏兰廷, 王录才, 黄桂桥. 我国金属材料的海水腐蚀研究现状 [J]. 中国铸造装备与技术, 2002, (6): 1
3 Wang J, Meng J, Tang X, et al. Assessment of corrosion behavior of steel in deep ocean [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 1
王佳, 孟洁, 唐晓等. 深海环境钢材腐蚀行为评价技术 [J]. 中国腐蚀与防护学报, 2007, 27: 1
4 Gao Y, Sun H Y, Sun L J. Initial corrosion behavior of X80 pipeline steel in the Yellow Sea [J]. Corros. Prot., 2018, 39: 327
高杨, 孙虎元, 孙立娟. X80管线钢在黄海海水中的初期腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 327
5 Liao K X, Huang L J, Wang D D, et al. Corrosion behavior of X65 pipeline steel in simulated seawater environment [J]. Corros. Prot., 2017, 38: 856
廖柯熹, 黄琳钧, 王丹丹等. X65管线钢在模拟海水环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 856
6 Cheng H L, Liu D J. Corrosion of A3, 20# and X70 steels in simulated flowing seawater [J]. Corros. Prot., 2012, 33: 212
程浩力, 刘德俊. A3、20#和X70钢室内模拟流动海水腐蚀试验 [J]. 腐蚀与防护, 2012, 33: 212
7 Liu Z J, Wang W, Wang J, et al. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method [J]. Corros. Sci., 2014, 80: 523
8 Jeffrey R, Melchers R E. Corrosion of vertical mild steel strips in seawater [J]. Corros. Sci., 2009, 51: 2291
9 Chen Y L, Zhang W, Wang W, et al. Evaluation of water-line area corrosion for Q235 steel by WBE technique [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 451
陈亚林, 张伟, 王伟等. WBE技术研究水线区Q235碳钢腐蚀 [J]. 中国腐蚀与防护学报, 2014, 34: 451
10 Hu J Z, Cheng X Q, Li X G, et al. Evaluation of sea-air interface area corrosion for carbon steel by WBE Technique and LP technique [J]. Corros. Prot., 2015, 36: 1014
胡杰珍, 程学群, 李晓刚等. 阵列电极 (WBE) 联合线性极化技术 (LP) 研究海水-大气界面区碳钢的腐蚀行为 [J]. 腐蚀与防护, 2015, 36: 1014
11 Tan Y J, Bailey S, Kinsella B. Mapping non-uniform corrosion using the wire beam electrode method. III. Water-line corrosion [J]. Corros. Sci., 2001, 43: 1931
12 Jeffrey R, Melchers R E. Effect of vertical length on corrosion of steel in the tidal zone [J]. Corrosion, 2009, 65: 695
13 Möller H, Boshoff E T, Froneman H. The corrosion behaviour of a low carbon steel in natural and synthetic seawaters [J]. J. Southern Afr. Inst. Min. Metall., 2006, 106: 585
14 Hou B R. Marine Corrosion and Protection [M]. Beijing: Science Press, 1997
侯宝荣. 海洋腐蚀与防护 [M]. 北京: 科学出版社, 1997
15 La Que F L. Corrosion testing, Edgar Marburg lecture [J]. Proc. ASTM, 1951, 51: 495
16 Schumacher M. Seawater Corrosion Handbook [M]. Park Ridge: Noyes Data Corp, 1979
17 Humble H A. The cathodic protection of steel piling in sea water [J]. Corrosion, 1949, 5: 292
18 Zhang M Y. Results of long-scale hanging of low alloy steel in different sea areas [A]. Proceedings of1979 Symposium on Corrosion and Protection (Seawater, Industrial Water and Biological parts) [M]. Beijing: Science Press, 1982: 26
张明洋. 低合金钢在不同海区长尺挂片结果 [A]. 1979年腐蚀与防护学术报告会议论文集 (海水、工业水和生物部分) [M]. 北京: 科学出版社, 1982: 26
19 Hou B R. Study on corrosion test method of marine structural steel [J]. Stud. Mar. Sin., 1981, 18: 87
侯保荣. 海洋结构钢腐蚀试验方法的研究 [J]. 海洋科学集刊, 1981, 18: 87
20 Melchers R E. Effect on marine immersion corrosion of carbon content of low alloy steels [J]. Corros. Sci., 2003, 45: 2609
21 Melchers R E. Modeling of marine immersion corrosion for mild and low-alloy steels-Part 1: Phenomenological model [J]. Corrosion, 2003, 59: 319
22 Huang G Q. Study of the corrosion potential of metals in seawater [J]. Corros. Prot., 2000, 21: 8
黄桂桥. 金属在海水中的腐蚀电位研究 [J]. 腐蚀与防护, 2000, 21: 8
23 Luo Y N, Song S Z, Jin W X, et al. In field electrochemical detections and corrosion behavior of carbon steel samples [J]. J. Chem. Ind. Eng., 2008, 59: 2864
雒娅楠, 宋诗哲, 金威贤等. 碳钢试片实海电化学检测与腐蚀规律的相关性 [J]. 化工学报, 2008, 59: 2864
24 Mu X, Wei J, Dong J H, et al. Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone [J]. Acta Metall. Sin., 2012, 48: 420
穆鑫, 魏洁, 董俊华等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究 [J]. 金属学报, 2012, 48: 420
25 Yang H Y, Huang G Q, Han B, et al. Corrosion behavior of electrically connected carbon steel samples exposed to tide zone and immersion zone for 30 d [J]. Corros. Prot., 2020, 41(11): 65
杨海洋, 黄桂桥, 韩冰等. 潮差区-全浸区电联接碳钢试样暴露30 d的腐蚀行为 [J]. 腐蚀与防护, 2020, 41(11): 65
26 Matsushima R, translated by Jing Y K. Low-alloy Corrosion Resistant a History of Development, Application and Research [M]. Beijing: Metallurgical Industry Press, 2004: 230
松岛岩著, 靳裕康译. 低合金耐蚀钢: 开发、发展及研究 [M]. 北京: 冶金工业出版社, 2004: 230
27 Misawa T. The thermodynamic consideration for Fe-H2O system at 25 ℃ [J]. Corros. Sci., 1973, 13: 659
28 Misawa T, Hashimoto K, Shimodaira S. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature [J]. Corros. Sci., 1974, 14: 131
29 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
30 Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
31 Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transitions in rust layers [J]. Corros. Sci., 1983, 23: 969
32 Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique [J]. Corros. Sci., 1990, 30: 681
33 Hœrlé S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles [J]. Corros. Sci., 2004, 46: 1431
34 Mu X, Wei J, Dong J H, et al. In situ corrosion monitoring of mild steel in a simulated tidal zone without marine fouling attachment by electrochemical impedance spectroscopy [J]. J. Mater. Sci. Technol., 2014, 30: 1043
35 Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corros. Sci., 2008, 50: 1872
36 Wang G, Chen J M. The cathodic behavior of iron rusts and its influence on corrosion and prevention [J]. J. Chin. Soc. Corros. Prot., 1985, 5: 258
王戈, 陈俊明. 铁锈的阴极行为及其对腐蚀与防护的影响 [J]. 中国腐蚀与防护学报, 1985, 5: 258
No Suggested Reading articles found!