Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 127-134    DOI: 10.11902/1005.4537.2021.212
Current Issue | Archive | Adv Search |
Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference
DENG Jiali1, YAN Maocheng2(), GAO Bowen2, ZHANG Hui2
1.Shandong Shihua Natural Gas Co. Ltd. , Qingdao 266071, China
2.National Engineering Research Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(19954KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of a pipeline steel in an artificial soil in the presence of dynamic AC interference, as a simulation of the interference of high-speed railway, is studied by means of mass-loss method, electrochemical measurements and surface analysis technique. The results show that, in the presence of dynamic AC interference, cathodic protection potential shifts to the negative direction, while the AC interference can increase the cathodic protection current density of the pipeline steel coupon. With the increase of interference intensity, the corrosion degree of pipeline steel increases and the pits deepen obviously. Cathodic protection (CP) can significantly slow down the corrosion degree of pipeline samples induced by the AC interference, and the corrosion rate is reduced to half of that of samples without cathodic protection. In the precent experimental case, the applied potential -1.0 V CP can fully protect the pipeline steel from corrosion induced by the dynamic AC interference with stray current below 100 A/m2.

Key words:  pipeline steel      stray current interference      AC interference      AC corrosion      cathodic protection     
Received:  24 August 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52071320);National Platform for Environment Corrosion of Materials(2005dka10400)
Corresponding Authors:  YAN Maocheng     E-mail:  yanmc@imr.ac.cn
About author:  YAN Maocheng, E-mail: yanmc@imr.ac.cn

Cite this article: 

DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 127-134.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.212     OR     https://www.jcscp.org/EN/Y2022/V42/I1/127

Fig.1  Schematic diagram of the experimental device
Fig.2  Schematic diagram of different AC current density interference experiments
Test conditionCP potential VSCEAC interference A·m-2Interference time minInterval time minTotal test time / dCorrosion rate mm / a
CP+100 A·m-2 AC-1.00 V1004650.024
CP+ 300A·m-2 AC-1.00 V3004650.092
100 A·m-2 ACOCP1004650.046
300 A·m-2 ACOCP3004650.195
Table 1  Experimental parameter settings under dynamic AC interference conditions
Fig.3  Polarization curves of samples under different AC interference level
Fig.4  DC and AC potential of X65 steel sample under different dynamic AC interference: (a1~a2) DC potential, (b1~b2) AC potential of the sample under CP+100 A/m2 AC, (c1~c2) DC potential, (d1~d2) AC potential of the sample under CP+100 A/m2 AC
Fig.5  SEM images of corrosion products on X65 steel after dynamic AC interference test: (a1~a3) 100 A/m2 AC; (b1~b3) 300 A/m2 AC
Fig.6  XRD pattern of corrosion products on sample surface
Fig.7  Surface morphologies of X65 steel coupons after dynamic AC interference test under cathodic protection: (a1~a3) CP+100 A/m2 AC; (b1~b3) CP+300 A/m2 AC; (a1, b1, c1) Sand and corrosion products, (a2, b2, c2) corrosion products, (a3, b3, c3) after corrosion products removed
Fig.8  SEM images of corrosion products on X65 steel after dynamic AC interference test under cathodic protection: (a1~a3) CP+100 A/m2 AC; (b1~b3) CP+300 A/m2 AC
Fig.9  SEM images of X65 steel corrosion morphology after dynamic AC interference test: (a1~a3) without CP, 100 A/m2 AC; (b1~b3) without CP 300 A/m2 AC; (c1~c3) CP+100 A/m2 AC; and (d1~d3) CP+300 A/m2 AC
Fig.10  Laser confocal diagram of etch pits on X65 steel coupon after dynamic AC interference test: (a) CP+100 A/m2 AC (38.9 μm); (b) CP+300 A/m2 AC (57.9 μm); (c) 100 A/m2 AC (45.7 μm); (d) 300 A/m2 AC (61.1 μm)
1 Matta V, Kumar G. Unbalance and voltage fluctuation study on AC traction system [A]. Electric Power Quality and Supply Reliability [C]. Chennai, India, 2014: 315
2 Mariscotti A. Distribution of the traction return current in AC and DC electric railway systems [J]. IEEE Trans. Power Deliv., 2003, 18: 1422
3 Ouadah M, Touhami O, Ibtiouen R, et al. Corrosive effects of the electromagnetic induction caused by the high voltage power lines on buried X70 steel pipelines [J]. Int. J. Elec. Power, 2017, 91: 34
4 Charalambous C A, Demetriou A, Lazari A L, et al. Effects of electromagnetic interference on underground pipelines caused by the operation of high voltage AC traction systems: the impact of harmonics [J]. IEEE Trans. Power Deliv., 2018, 33: 2664
5 Brenna A, Ormellese M, Lazzari L. Electromechanical breakdown mechanism of passive film in alternating current-related corrosion of carbon steel under cathodic protection condition [J]. Corrosion, 2016, 72: 1055
6 Micu D D, Christoforidis G C, Czumbil L. AC interference on pipelines due to double circuit power lines: A detailed study [J]. Electr. Power Syst. Res., 2013, 103: 1
7 Funk D, Schoeneich H G. Probleme bei der Bewertung der Wechselstrom-Korrosions-gefaehrdung von Rohrleitungen mit Probeblechen [J]. 3R International, 2002, 41: 582
8 Floyd R. Testing and mitigation of AC corrosion on 8 Line: A field study [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
9 Liang Y, Du Y X. Research progress on evaluation criteria and mechanism of corrosion under cathodic protection and AC Interference [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 215
梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 215
10 Hanson H R, Smart J. AC corrosion on a pipeline located in a HVAC utility corridor [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
11 Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 341
王晓霖, 闫茂成, 舒韵等. 破损涂层下管线钢的交流电干扰腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 341
12 Lalvani S B, Zhang G. The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I [J]. Corros. Sci., 1995, 37: 1567
13 Song H S, Kho Y T, Kim Y G, et al. Competition of AC and DC current in AC corrosion under cathodic protection [A]. Corrosion 2002 [C]. Denver, Colorado, 2002
14 Weng Y J, Wang N. Carbon steel corrosion induced by alternating current [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 270
翁永基, 王宁. 碳钢交流电腐蚀机理的探讨 [J]. 中国腐蚀与防护学报, 2011, 31: 270
15 Büchler M. Alternating current corrosion of cathodically protected pipelines: Discussion of the involved processes and their consequences on the critical interference values [J]. Mater. Corros., 2012, 63: 1181
16 Zhang R, Vairavanathan P R, Lalvani S B. Perturbation method analysis of AC-induced corrosion [J]. Corros. Sci., 2008, 50: 1664
17 Ghanbari E, Iannuzzi M, Lillard R S. The mechanism of alternating current corrosion of API grade X65 pipeline steel [J]. Corrosion, 2016, 72: 1196
18 Chen L, Du Y X, Liang Y, et al. Research on corrosion behaviour of X65 pipeline steel under dynamic AC interference [J]. Corros. Eng. Sci. Technol., 2021, 56: 219
19 Wang X H, Yang Y, Chen Y C, et al. Effect of alternating current on corrosion behavior of X100 pipeline steel in a simulated solution for soil medium at Korla district [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 259
王新华, 杨永, 陈迎春等. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 259
20 Xiao Y W, Du Y X, Tang D Z, et al. Study on the influence of environmental factors on AC corrosion behavior and its mechanism [J]. Mater. Corros., 2018, 69: 601
21 Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment [J]. Acta Metall. Sin., 2017, 53: 575
万红霞, 宋东东, 刘智勇等. 交流电对X80钢在近中性环境中腐蚀行为的影响 [J]. 金属学报, 2017, 53: 575
22 Büchler M, Schöneich H G. Investigation of alternating current corrosion of cathodically protected pipelines: Development of a detection method, mitigation measures, and a model for the mechanism [J]. Corrosion, 2009, 65: 578
[1] ZHU Yanshan, ZHANG Jiming, WU Fengjuan, QU Jinbo. Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel[J]. 中国腐蚀与防护学报, 2022, 42(1): 169-174.
[2] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[3] GONG Ke, WU Ming, ZHANG Sheng. Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[4] ZHUANG Dawei, DU Yanxia, CHEN Taotao, LU Danping. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[5] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[6] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[7] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[8] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[9] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[10] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[11] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[12] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[13] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[14] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[15] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
No Suggested Reading articles found!