Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 727-731    DOI: 10.11902/1005.4537.2020.166
Current Issue | Archive | Adv Search |
Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel
GONG Ke1,2, WU Ming1,2(), ZHANG Sheng1
1.College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266555, China
2.College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(8964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of the variation of HCO3- concentration in an artificial soil solution, which aims to simulate the liquid of the soil nearby a pipeline situated at Shenyang area, on the stress corrosion cracking behavior of high-strength X90 pipeline steel was systematically studied. The results show that the corrosion rate of X90 steel increases first and then decreases with the increase of HCO3- concentration. The variation of HCO3- concentration on the corrosion rate of X90 pipeline steel may be ascribed to that the protective properties of the formed passive film may alter with the varying HCO3- concentration. When the HCO3- concentration of the solution is 7%, the protectiveness on of the passive film is the weakest, and the electrochemical corrosion rate of X90 pipeline steel is the fastest.

Key words:  HCO3-      X90 pipeline steel      passive film      shenyang soil     
Received:  21 September 2020     
ZTFLH:  TG172  
Corresponding Authors:  WU Ming     E-mail:  wuming_0413@sina.com
About author:  WU Ming, E-mail: wuming_0413@sina.com

Cite this article: 

GONG Ke, WU Ming, ZHANG Sheng. Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 727-731.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.166     OR     https://www.jcscp.org/EN/Y2021/V41/I5/727

Fig.1  Polarization curves of X90 pipeline steel with differ-ent concentrations of HCO3-
Fig.2  Relation curve between HCO3- concentration and corrosion potential Ecoor of X90 pipeline steel
Fig.3  X90 pipeline steel electrochemical impedance in shenyang soil simulation solution with different concentration of HCO3-
Fig.4  X90 pipeline steel equivalent circuit diagram of AC impedance map in shenyang soil simulation solution for 1%, 3% and 5%HCO3- (a) and 7% and 9% HCO3- (b)
ѡ (HCO3-) / %Rs / Ω·cm2Rct / Ω·cm2W / S·s5·cm-2
13.3286022.17×10-4
33.7672112.58×10-4
56.4144724.12×10-4
Table 1  AC impedance curve fitting parameters of X90 pipeline steel in shenyang soil simulation solution with concentrations of 1%, 3% and 5%HCO3-
ѡ (HCO3-) / %Rs / Ω·cm2W / S·s5·cm-2Rct / Ω․cm2Rf / Ω·cm2
75.361.07×10-344727.99
97.231.18×10-347236.26
Table 2  AC impedance curve fitting parameters of X90 pipeline steel in shenyang soil simulation solution with concentration of 7% and 9%HCO3-
Fig.5  SSRT curves of X90 pipeline steel in Shenyang soil simulation solution with different concentrations of HCO3-
Fig.6  Macroscopic fracture morphologies (a1~e1), microscopic fracture morphologies (a2~e2) and side fracture morphologies (a3~e3) of SSRT of 90X pipeline steel in Shenyang soil simulation solution with different concentrations of HCO3-
1 Anderson C M, Mayes M, LaBelle R. Update of occurrence rates for offshore oil spills [R]. OCS Report BOEM 2012-069, 2012
2 Xu L N, Xiao H, Shang W J, et al. Passivation of X65 (UNS K03014) carbon steel in NaHCO3 solution in a CO2 environment [J]. Corros. Sci., 2016, 109: 246
3 Xin Y C, Hu T, Chu P K. Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3- [J]. Corros. Sci., 2011, 53: 1522
4 Machuca L L, Lepkova K, Petroski A. Corrosion of carbon steel in the presence of oilfield deposit and thiosulphate-reducing bacteria in CO2 environment [J]. Corros. Sci., 2017, 129: 16
5 Wright R F, Brand E R, Ziomek-Moroz M, et al. Effect of HCO3- on electrochemical kinetics of carbon steel corrosion in CO2-saturated brines [J]. Electrochim. Acta, 2018, 290: 626
6 Zhang Q L, Cui X, Yao R. Effect of HCO3- concentration on corrosion behavior of X80 pipeline steel in simulated soil solution with high pH value [J]. Mater. Prot., 2016, 49(12): 17
张秋利, 崔兴, 姚蓉. HCO3-浓度对X80管线钢在高pH值模拟土壤溶液中腐蚀行为的影响 [J]. 材料保护, 2016, 49(12): 17
7 Liu X, Mao X. Electrochemical polarization and stress corrosion cracking behaviours of a pipeline steel in dilute bicarbonate solution with chloride ion [J]. Scr. Metall. Mater., 1995, 33: 145
8 Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
9 Han J B, Carey J W, Zhang J S. A coupled electrochemical-geochemical model of corrosion for mild steel in high-pressure CO2-saline environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 777
10 Han J B, Zhang J S, Carey J W. Effect of bicarbonate on corrosion of carbon steel in CO2 saturated brines [J]. Int. J. Greenhouse Gas Control, 2011, 5: 1680
[1] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[4] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[5] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[6] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[7] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[8] Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[9] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[10] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[11] Xinqiang WU,Yao FU,Wei KE,Song XU,Bing FENG,Botao HU,Jiazheng LU. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[12] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[13] ZHAO Yang,LIANG Ping,SHI Yanhua,WANG Bingxin,LIU Feng,WU Zhanwen. Comparison of Passive Films on X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[14] LIU Zuojia,CHENG Xuequn,LI Xiaogang,LIU Xiaohui. Application of PDM (Point Defect Model) on 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(2): 90-96.
[15] FAN Lin,LI Xiaogang,DU Cuiwei,LIU Zhiyong. ELECTROCHEMICAL BEHAVIOR OF PASSIVE FILMS FORMED ON X80 PIPELINE STEEL IN VARIOUS CONCENTRATED NaHCO3 SOLUTIONS[J]. 中国腐蚀与防护学报, 2012, 32(4): 322-326.
No Suggested Reading articles found!