Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 220-230    DOI: 10.11902/1005.4537.2022.087
Current Issue | Archive | Adv Search |
Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings
YU Fang, WANG Xiang, ZHANG Zhao()
Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Download:  HTML  PDF(1004KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Organic coatings play a significant role in corrosion protection of metallic materials due to their convenient operation and low cost. Among them, epoxy resin is the most widely used as coating substrate due to its excellent adhesion to materials to be coated, remarkable chemical inertness and mechanical properties. However, voids and conductive channels would form due to shrinkage or solvent evaporation during its curing process. To cope with it, nanoparticles, which can be effectively filled in the tiny pores of epoxy resins are added, thereby improving the barrier and anti-corrosion properties of the coating. However, nanoparticles are prone to agglomeration owing to their high specific surface area, and therefore have poor dispersibility in organic resins. Therefore, surface-modification is required to improve their compatibility with resins and therefore to achieve specific performance. In this paper, nano-fillers currently used for epoxy anti-corrosion coatings are summarized and classified into three categories, namely non-metallic nano-fillers (including inorganic non-metallic nano-fillers and organic nano-fillers), metallic nano-fillers and new nano-fillers (MOFs and MXene materials), also, the properties and modification strategies of nano-fillers are introduced in detail. Finally, the challenges and outlook of nano-fillers are discussed.

Key words:  epoxy resin      nanofiller      anti-corrosion     
Received:  29 March 2022      32134.14.1005.4537.2022.087
ZTFLH:  TG172  
About author:  ZHANG Zhao, E-mail: eaglezzy@zju.edu.cm

Cite this article: 

YU Fang, WANG Xiang, ZHANG Zhao. Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 220-230.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.087     OR     https://www.jcscp.org/EN/Y2023/V43/I2/220

Fig.1  Repairing of intrinsic defects in graphene by polydopamine[15]
Fig.2  Synthesis mechanism of SiO2@MoS2 nanoparticles with core-shell structure[56]
Fig.3  Schematic diagram of the synthesis of ultra-highly exfoliated graphene modified with PDA and BTA (PBG) and the healing performance of the epoxy resin coating added with PBG (EPBG)[34]
Fig.4  Schematic representation of the BTA encapsulation and the possible interactions in BTA@Zn-BTC MOF[115]
[1] Park S M, Shon M Y. Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating [J]. J. Ind. Eng. Chem., 2015, 21: 1258
[2] Zheng S L, Bellido-Aguilar D A, Hu J, et al. Waterborne bio-based epoxy coatings for the corrosion protection of metallic substrates [J]. Prog. Org. Coat., 2019, 136: 105265
[3] Dagdag O, Hsissou R, El Harfi A, et al. Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: computational modeling reinforced experimental studies [J]. Surf. Interf., 2020, 18: 100454
[4] Ramezanzadeh B, Moghadam M H M, Shohani N, et al. Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating [J]. Chem. Eng. J., 2017, 320: 363
doi: 10.1016/j.cej.2017.03.061
[5] Zhu B F, Liu Z H, Liu J, et al. Preparation of fluorinated/silanized polyacrylates amphiphilic polymers and their anticorrosion and antifouling performance [J]. Prog. Org. Coat., 2020, 140: 105510
[6] Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot.. 2022, 42: 435
(杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435)
[7] Yin M, Hou L F, Wang Z W, et al. Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy [J]. Corros. Sci., 2021, 184: 109378
doi: 10.1016/j.corsci.2021.109378
[8] Xie Y K, Liu W Q, Liang L Y, et al. Enhancement of anticorrosion property and hydrophobicity of modified epoxy coatings with fluorinated polyacrylate [J]. Colloids Surf., 2019, 579A: 123659
[9] Auepattana-Aumrung K, Phakkeeree T, Crespy D. Polymer-corrosion inhibitor conjugates as additives for anticorrosion application [J]. Prog. Org. Coat., 2022, 163: 106639
[10] Feghali E, Van De Pas D J, Parrott A J, et al. Biobased epoxy thermoset polymers from depolymerized native hardwood lignin [J]. ACS Macro Lett., 2020, 9: 1155
doi: 10.1021/acsmacrolett.0c00424 pmid: 35653206
[11] Javidparvar A A, Naderi R, Ramezanzadeh B. Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection [J]. Composites, 2019, 172B: 363
[12] Liu X W, Xiong J P, Lv Y W, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS [J]. Prog. Org. Coat., 2009, 64: 497
doi: 10.1016/j.porgcoat.2008.08.012
[13] Zmozinski A V, Peres R S, Freiberger K, et al. Zinc tannate and magnesium tannate as anticorrosion pigments in epoxy paint formulations [J]. Prog. Org. Coat., 2018, 121: 23
[14] Liu S Y, Wang X W, Yin Q, et al. A facile approach to fabricating graphene/waterborne epoxy coatings with dual functionalities of barrier and corrosion inhibitor [J]. J. Mater. Sci. Technol., 2022, 112: 263
doi: 10.1016/j.jmst.2021.07.061
[15] Zheng Z Q, Xiao L L, Huang P, et al. Polydopamine improved anticorrosion of graphene on copper: inhibiting galvanic corrosion and healing structure defects [J]. Appl. Mater. Today, 2021, 24: 101069
[16] Sun W, Wu T T, Wang L D, et al. The role of graphene loading on the corrosion-promotion activity of graphene/epoxy nanocomposite coatings [J]. Composites, 2019, 173B: 106916
[17] Schriver M, Regan W, Gannett W J, et al. Graphene as a long-term metal oxidation barrier: worse than nothing [J]. ACS Nano, 2013, 7: 5763
doi: 10.1021/nn4014356 pmid: 23755733
[18] Jing Y J, Wang P Q, Yang Q B, et al. MoS2 decorated with ZrO2 nanoparticles through mussel-inspired chemistry of dopamine for reinforcing anticorrosion of epoxy coatings [J]. Colloids Surf., 2021, 608A: 125625
[19] Ding J H, Zhao H R, Zhou M, et al. Super-anticorrosive inverse nacre-like graphene-epoxy composite coating [J]. Carbon, 2021, 181: 204
doi: 10.1016/j.carbon.2021.05.017
[20] Yan H, Zhang L, Li H, et al. Towards high-performance additive of Ti3C2/graphene hybrid with a novel wrapping structure in epoxy coating [J]. Carbon, 2020, 157: 217
doi: 10.1016/j.carbon.2019.10.034
[21] Su Y, Qiu S H, Wei J Y, et al. Sulfonated polyaniline assisted hierarchical assembly of graphene-LDH nanohybrid for enhanced anticorrosion performance of waterborne epoxy coatings [J]. Chem. Eng. J., 2021, 426: 131269
doi: 10.1016/j.cej.2021.131269
[22] Sun W, Wang L D, Yang Z Q, et al. A facile method for the modification of graphene nanosheets as promising anticorrosion pigments [J]. Mater. Lett., 2018, 228: 152
doi: 10.1016/j.matlet.2018.05.105
[23] Qiu S H, Liu G, Li W, et al. Noncovalent exfoliation of graphene and its multifunctional composite coating with enhanced anticorrosion and tribological performance [J]. J. Alloy. Compd., 2018, 747: 60
doi: 10.1016/j.jallcom.2018.03.007
[24] Shi H Y, Liu W Q, Xie Y K, et al. Synthesis of carboxymethyl chitosan-functionalized graphene nanomaterial for anticorrosive reinforcement of waterborne epoxy coating [J]. Carbohydr. Polym., 2021, 252: 117249
doi: 10.1016/j.carbpol.2020.117249
[25] Liu C B, Li J Y, Jin Z Y, et al. Synthesis of graphene-epoxy nanocomposites with the capability to self-heal underwater for materials protection [J]. Compos. Commun., 2019, 15: 155
doi: 10.1016/j.coco.2019.07.011
[26] Ren F, Zhu G M, Ren P G, et al. In situ polymerization of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties [J]. Appl. Surf. Sci., 2014, 316: 549
doi: 10.1016/j.apsusc.2014.07.159
[27] Keshmiri N, Najmi P, Ramezanzadeh B, et al. Nano-Scale P, Zn-codoped reduced-graphene oxide incorporated epoxy composite; synthesis, electronic-level DFT-D modeling, and anti-corrosion properties [J]. Prog. Org. Coat., 2021, 159: 106416
[28] Lv X D, Li X T, Li N, et al. ZrO2 nanoparticle encapsulation of graphene microsheets for enhancing anticorrosion performance of epoxy coatings [J]. Surf. Coat. Technol., 2019, 358: 443
doi: 10.1016/j.surfcoat.2018.11.045
[29] Zhang C Y, Li W, Liu C, et al. Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings [J]. J. Colloid Interface Sci., 2022, 608: 1025
doi: 10.1016/j.jcis.2021.10.024
[30] Li Z J, He Y, Yan S M, et al. A novel silk fibroin-graphene oxide hybrid for reinforcing corrosion protection performance of waterborne epoxy coating [J]. Colloids Surf., 2022, 634A: 127959
[31] Zhu Q S, Li E, Liu X H, et al. Synergistic effect of polypyrrole functionalized graphene oxide and zinc phosphate for enhanced anticorrosion performance of epoxy coatings [J]. Composites, 2020, 130A: 105752
[32] Wu H, Cheng L, Liu C B, et al. Engineering the interface in graphene oxide/epoxy composites using bio-based epoxy-graphene oxide nanomaterial to achieve superior anticorrosion performance [J]. J. Colloid Interface Sci., 2021, 587: 755
doi: 10.1016/j.jcis.2020.11.035
[33] Zhou S G, Wu Y M, Zhao W J, et al. Designing reduced graphene oxide/zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate [J]. Mater. Des., 2019, 169: 107694
doi: 10.1016/j.matdes.2019.107694
[34] Chen G Y, Jin B, Li Y L, et al. A smart healable anticorrosion coating with enhanced loading of benzotriazole enabled by ultra-highly exfoliated graphene and mussel-inspired chemistry [J]. Carbon, 2022, 187: 439
doi: 10.1016/j.carbon.2021.11.048
[35] Yan D S, Liu J L, Zhang Z H, et al. Dual-functional graphene oxide-based nanomaterial for enhancing the passive and active corrosion protection of epoxy coating [J]. Composites, 2021, 222B: 109075
[36] Cao K Y, Yu Z X, Yin D, et al. Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances [J]. Prog. Org. Coat., 2020, 143: 105629
[37] Dhamodharan D, Dhinakaran V, Nagavaram R, et al. Experimental and numerical study on smectic aligned zirconium phosphate decorated graphene oxide hybrids effects over waterborne epoxy multi-functional properties enhancement [J]. J. Ind. Eng. Chem., 2022, 107: 165
doi: 10.1016/j.jiec.2021.11.043
[38] Kumar A M, Jose J, Hussein M A. Novel polyaniline/chitosan/reduced graphene oxide ternary nanocomposites: feasible reinforcement in epoxy coatings on mild steel for corrosion protection [J]. Prog. Org. Coat., 2022, 163: 106678
[39] Nayak S R, Mohana K N, Hegde M B. Anticorrosion performance of 4-fluoro phenol functionalized graphene oxide nanocomposite coating on mild steel [J]. J. Fluorine Chem., 2019, 228: 109392
doi: 10.1016/j.jfluchem.2019.109392
[40] Liu J H, Yu Q, Yu M, et al. Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024 [J]. J. Alloy. Compd., 2018, 744: 728
doi: 10.1016/j.jallcom.2018.01.267
[41] Lin Y T, Don T M, Wong C J, et al. Improvement of mechanical properties and anticorrosion performance of epoxy coatings by the introduction of polyaniline/graphene composite [J]. Surf. Coat. Technol., 2019, 374: 1128
doi: 10.1016/j.surfcoat.2018.01.050
[42] Rajitha K, Mohana K N S. Synthesis of graphene oxide-based nanofillers and their influence on the anticorrosion performance of epoxy coating in saline medium [J]. Diamond Relat. Mater., 2020, 108: 107974
doi: 10.1016/j.diamond.2020.107974
[43] Aghili M, Yazdi M K, Ranjbar Z, et al. Anticorrosion performance of electro-deposited epoxy/ amine functionalized graphene oxide nanocomposite coatings [J]. Corros. Sci., 2021, 179: 109143
doi: 10.1016/j.corsci.2020.109143
[44] Ye Y W, Zhang D W, Liu T, et al. Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets [J]. J. Hazard. Mater., 2019, 364: 244
doi: S0304-3894(18)30949-X pmid: 30368062
[45] Xue X Z, Zhang J Y, Zhou D, et al. In-situ bonding technology and excellent anticorrosion activity of graphene oxide / hydroxyapatite nanocomposite pigment [J]. Dyes Pigment., 2019, 160: 109
doi: 10.1016/j.dyepig.2018.07.057
[46] Zhu X B, Zhao H C, Wang L P, et al. Bioinspired ultrathin graphene nanosheets sandwiched between epoxy layers for high performance of anticorrosion coatings [J]. Chem. Eng. J., 2021, 410: 128301
doi: 10.1016/j.cej.2020.128301
[47] Cen H Y, Cao J J, Chen Z Y. Functionalized carbon nanotubes as a novel inhibitor to enhance the anticorrosion performance of carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2020, 177: 109011
doi: 10.1016/j.corsci.2020.109011
[48] Li J C, Chen P, Wang Y, et al. Corrosion resistance of surface texturing epoxy resin coatings reinforced with fly ash cenospheres and multiwalled carbon nanotubes [J]. Prog. Org. Coat., 2021, 158: 106388
[49] Shen W N, Feng L J, Liu X, et al. Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying [J]. Prog. Org. Coat., 2016, 90: 139
[50] Rahmani P, Shojaei A, Tavandashti N P. Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating [J]. J. Ind. Eng. Chem., 2020, 83: 153
doi: 10.1016/j.jiec.2019.11.023
[51] Xia Y Q, Zhang N G, Zhou Z P, et al. Incorporating SiO2 functionalized g-C3N4 sheets to enhance anticorrosion performance of waterborne epoxy [J]. Prog. Org. Coat., 2020, 147: 105768
[52] Steffi A P, Balaji R, Prakash N, et al. Incorporation of SiO2 functionalized g-C3N4 sheets with TiO2 nanoparticles to enhance the anticorrosion performance of metal specimens in aggressive Cl- environment [J]. Chemosphere, 2022, 290: 133332
doi: 10.1016/j.chemosphere.2021.133332
[53] Xia Y Q, He Y, Chen C L, et al. Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating [J]. React. Funct. Polym., 2020, 146: 104405
doi: 10.1016/j.reactfunctpolym.2019.104405
[54] Li S X, Du F F, Lin Y X, et al. Excellent anti-corrosion performance of epoxy composite coatings filled with novel N-doped carbon nanodots [J]. Eur. Polym. J., 2022, 163: 110957
doi: 10.1016/j.eurpolymj.2021.110957
[55] Li Z Y, Ravenni G, Bi H C, et al. Effects of biochar nanoparticles on anticorrosive performance of zinc-rich epoxy coatings [J]. Prog. Org. Coat., 2021, 158: 106351
[56] Xia Y Q, He Y, Chen C L, et al. MoS2 nanosheets modified SiO2 to enhance the anticorrosive and mechanical performance of epoxy coating [J]. Prog. Org. Coat., 2019, 132: 316
[57] Jia S S, Deng S L, Luo S, et al. Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings [J]. Appl. Surf. Sci., 2019, 466: 84
doi: 10.1016/j.apsusc.2018.10.017
[58] Zhu B F, Ou R J, Liu J, et al. Fabrication of superhydrophobic surfaces with hierarchical structure and their corrosion resistance and self-cleaning properties [J]. Surf. Interfaces, 2022, 28: 101608
[59] Cheng M, Jiang H, Wang Z K, et al. Nanocatalyst-mediated oxygen depletion in epoxy coating for active corrosion protection [J]. Chem. Eng. J., 2021, 425: 131649
doi: 10.1016/j.cej.2021.131649
[60] Wang T, Ge H Y, Zhang K L. A novel core-shell silica@graphene straticulate structured antistatic anticorrosion composite coating [J]. J. Alloy. Compd., 2018, 745: 705
doi: 10.1016/j.jallcom.2018.02.222
[61] Chen X, Wen S F, Feng T, et al. High solids organic-inorganic hybrid coatings based on silicone-epoxy-silica coating with improved anticorrosion performance for AA2024 protection [J]. Prog. Org. Coat., 2020, 139: 105374
[62] Atta A M, Mohamed N H, Rostom M, et al. New hydrophobic silica nanoparticles capped with petroleum paraffin wax embedded in epoxy networks as multifunctional steel epoxy coatings [J]. Prog. Org. Coat., 2019, 128: 99
[63] Matin E, Attar M M, Ramezanzadeh B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate [J]. Prog. Org. Coat., 2015, 78: 395
[64] Ghanbari A, Attar M M. A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate [J]. J. Ind. Eng. Chem., 2015, 23: 145
doi: 10.1016/j.jiec.2014.08.008
[65] Yu H D, Geng C D, Liu C M, et al. Near-infrared light photothermally induced shape memory and self-healing effects of epoxy resin coating with polyaniline nanofibers [J]. Syn. Met., 2020, 226:116417
[66] Hao Y S, Sun W, Jiang L L, et al. Self-healing effect of epoxy coating containing mesoporous polyaniline hollow spheres loaded with benzotriazole [J]. Prog. Org. Coat., 2021, 159: 106445
[67] Lv Y Q, Zheng Y Q, Zhu H L, et al. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106: 56
doi: 10.1016/j.jmst.2021.07.029
[68] Wang H H, Zhang W J, Ma Y N, et al. Phosphorylated polymer/anionic surfactant doped polypyrrole in waterborne epoxy matrix toward enhanced mechanical and chemical resistance [J]. Prog. Org. Coat., 2020, 143: 105634
[69] Liu T, Li J Y, Li X Y, et al. Effect of self-assembled tetraaniline nanofiber on the anticorrosion performance of waterborne epoxy coating [J]. Prog. Org. Coat., 2019, 128: 137
[70] Ma I A W, Sh A, Ramesh K, et al. Anticorrosion properties of epoxy-nanochitosan nanocomposite coating [J]. Prog. Org. Coat., 2017, 113: 74
[71] Cheng L, Liu C B, Wu H, et al. A two-dimensional nanocontainer based on mesoporous polydopamine coated lamellar hydroxyapatite towards anticorrosion reinforcement of waterborne epoxy coatings [J]. Corros. Sci., 2021, 193: 109891
doi: 10.1016/j.corsci.2021.109891
[72] Yan H, Cai M, Wang J C, et al. Insight into anticorrosion/antiwear behavior of inorganic-organic multilayer protection system composed of nitriding layer and epoxy coating with Ti3C2Tx MXene [J]. Appl. Surf. Sci., 2021, 536: 147974
doi: 10.1016/j.apsusc.2020.147974
[73] Javidparvar A A, Naderi R, Ramezanzadeh B. Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: application in epoxy-based nanocomposite for active corrosion protection [J]. Corros. Sci., 2020, 165: 108379
doi: 10.1016/j.corsci.2019.108379
[74] He Y, Zhang C L, Wu F, et al. Fabrication study of a new anticorrosion coating based on supramolecular nanocontainer [J]. Synth. Met., 2016, 212: 186
doi: 10.1016/j.synthmet.2015.10.022
[75] Asaad M A, Raja P B, Huseien G F, et al. Self-healing epoxy coating doped with Elaesis guineensis/silver nanoparticles: a robust corrosion inhibitor [J]. Constr. Build. Mater., 2021, 312: 125396
doi: 10.1016/j.conbuildmat.2021.125396
[76] Udoh I I, Shi H W, Liu F C, et al. Microcontainer-based waterborne epoxy coatings for AA2024-T3: Effect of nature and number of polyelectrolyte multilayers on active protection performance [J]. Mater. Chem. Phys., 2020, 241: 122404
doi: 10.1016/j.matchemphys.2019.122404
[77] Jin Z Y, Zhao Z L, Zhao T, et al. One-step preparation of inhibitor-loaded nanocontainers and their application in self-healing coatings [J]. Corros. Commun., 2021, 2: 63
doi: 10.1016/j.corcom.2021.10.001
[78] Yao Y C, Sun H, Zhang Y L, et al. Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers [J]. Prog. Org. Coat., 2020, 139: 105470
[79] Liu T F, Li W, Zhang C Y, et al. Preparation of highly efficient self-healing anticorrosion epoxy coating by integration of benzotriazole corrosion inhibitor loaded 2D-COF [J]. J. Ind. Eng. Chem., 2021, 97: 560
doi: 10.1016/j.jiec.2021.03.012
[80] Zhang M L, Yu X, Lin Y N, et al. Anti-corrosion coatings with active and passive protective performances based on v-COF/GO nanocontainers [J]. Prog. Org. Coat., 2021, 159: 106415
[81] Zhou C L, Li Z, Li J, et al. Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers [J]. Chem. Eng. J., 2020, 385: 123835
doi: 10.1016/j.cej.2019.123835
[82] Yan H, Fan X Q, Cai M, et al. Amino-functionalized Ti3C2Tx loading ZIF-8 nanocontainer@benzotriazole as multifunctional composite filler towards self-healing epoxy coating [J]. J. Colloid Interface Sci., 2021, 602: 131
doi: 10.1016/j.jcis.2021.06.004
[83] Cheng M, Li F T, Wang Z K, et al. New valve-free organosilica nanocontainer for active anticorrosion of polymer coatings [J]. Composites, 2021, 224B: 109185
[84] Wang J X, Yang H, Meng Z, et al. Epoxy coating with excellent anticorrosion and pH-responsive performances based on DEAEMA modified mesoporous silica nanomaterials [J]. Colloids Surf., 2022, 634A: 127951
[85] El-Faham A, Atta A M, Osman S M, et al. Silver-embedded epoxy nanocomposites as organic coatings for steel [J]. Prog. Org. Coat., 2018, 123: 209
[86] Shen W N, Zhang T F, Ge Y F, et al. Multifunctional AgO/epoxy nanocomposites with enhanced mechanical, anticorrosion and bactericidal properties [J]. Prog. Org. Coat., 2021, 152: 106130
[87] Radoman T S, Džunuzović J V, Grgur B N, et al. Improvement of the epoxy coating properties by incorporation of polyaniline surface treated TiO2 nanoparticles previously modified with vitamin B6 [J]. Prog. Org. Coat., 2016, 99: 346
[88] Pour Z S, Ghaemy M, Bordbar S, et al. Effects of surface treatment of TiO2 nanoparticles on the adhesion and anticorrosion properties of the epoxy coating on mild steel using electrochemical technique [J]. Prog. Org. Coat., 2018, 119: 99
[89] Huang W F, Xiao Y L, Huang Z J, et al. Super-hydrophobic polyaniline-TiO2 hierarchical nanocomposite as anticorrosion coating [J]. Mater. Lett., 2020, 258: 126822
doi: 10.1016/j.matlet.2019.126822
[90] Talebi H, Olad A, Nosrati R. Fe3O4/PANI nanocomposite core-shell structure in epoxy resin matrix for the application as electromagnetic waves absorber [J]. Prog. Org. Coat., 2022, 163: 106665
[91] Hosseini M G, Sefidi P Y. Electrochemical impedance spectroscopy evaluation on the protective properties of epoxy/DBSAdoped polyaniline-TiO2 nanocomposite coated mild steel under cathodic polarization [J]. Surf. Coat. Technol., 2017, 331: 66
doi: 10.1016/j.surfcoat.2017.10.043
[92] Tavandashti N P, Almas S M, Esmaeilzadeh E. Corrosion protection performance of epoxy coating containing alumina/PANI nanoparticles doped with cerium nitrate inhibitor on Al-2024 substrates [J]. Prog. Org. Coat., 2021, 152: 106133
[93] Yu M D, Fan C Q, Han S K, et al. Anticorrosion behavior of superhydrophobic particles reinforced epoxy coatings for long-time in the high salinity liquid [J]. Prog. Org. Coat., 2020, 147: 105867
[94] Wu F, Li J F, Quan H, et al. Robust polyurea/poly (urea-formalde-hyde) hybrid microcapsules decorated with Al2O3 nano-shell for improved self-healing performance [J]. Appl. Surf. Sci., 2021, 542: 148561
doi: 10.1016/j.apsusc.2020.148561
[95] Zhang C, Chen L, He Y, et al. Designing a high-performance waterborne epoxy coating with passive/active dual self-healing properties by synergistic effect of V2O5@polyaniline-tannic acid inhibitors [J]. Prog. Org. Coat., 2021, 151: 106036
[96] Kang Y T, Wang C C, Chen C Y. Corrosion-protective performance of magnetic CoFe2O4/polyaniline nanocomposite within epoxy coatings [J]. J. Taiwan Inst. Chem. Eng., 2021, 127: 357
doi: 10.1016/j.jtice.2021.08.008
[97] Situ Y, Ji W W, Liu C Y, et al. Synergistic effect of homogeneously dispersed PANI-TiN nanocomposites towards long-term anticorrosive performance of epoxy coatings [J]. Prog. Org. Coat., 2019, 130: 158
doi: 10.1016/j.porgcoat.2019.01.034
[98] Liu X R, Miao M, Zhang J Y, et al. Surface coordination and excellent anticorrosion performance of strontiumapatite nanocomposite [J]. J. Ind. Eng. Chem., 2019, 80: 656
doi: 10.1016/j.jiec.2019.08.048
[99] Hosseini M G, Aboutalebi K. Improving the anticorrosive performance of epoxy coatings by embedding various percentages of unmodified and imidazole modified CeO2 nanoparticles [J]. Prog. Org. Coat., 2018, 122: 56
[100] Feng Z L, Wan R J, Chen S M, et al. In-situ repair of marine coatings by a Fe3O4 nanoparticle-modified epoxy resin under seawater [J]. Chem. Eng. J., 2022, 430: 132827
doi: 10.1016/j.cej.2021.132827
[101] Atta A M, El-Faham A, Al-Lohedan H A, et al. Modified triazine decorated with Fe3O4 and Ag/Ag2O nanoparticles for self-healing of steel epoxy coatings in seawater [J]. Prog. Org. Coat., 2018, 121: 247
[102] El-Masry M M, Ramadan R, Ahmed M K. The effect of adding cobalt ferrite nanoparticles on the mechanical properties of epoxy resin [J]. Results Mater., 2020, 8: 100160
[103] Soltani N, Salavati H, Moghadasi A. The role of Na-montmorillonite/cobalt ferrite nanoparticles in the corrosion of epoxy coated AA 3105 aluminum alloy [J]. Surf. Interfaces, 2019, 15: 89
doi: 10.1016/j.surfin.2019.02.006
[104] Binyaseen A M, Bayazeed A, Al-Nami S Y, et al. Development of epoxy/rice straw-based cellulose nanowhiskers composite smart coating immobilized with rare-earth doped aluminate: photoluminescence and anticorrosion properties for sustainability [J]. Ceram. Int., 2022, 48: 4841
doi: 10.1016/j.ceramint.2021.11.020
[105] Qiu S H, Su Y, Zhao H C, et al. Ultrathin metal-organic framework nanosheets prepared via surfactant-assisted method and exhibition of enhanced anticorrosion for composite coatings [J]. Corros. Sci., 2021, 178: 109090
doi: 10.1016/j.corsci.2020.109090
[106] Arunadevi N, Swathika M, Mehala M, et al. New epoxy-Nano metal oxide-based coatings for enhanced corrosion protection [J]. J. Mol. Struct., 2022, 1250: 131790
doi: 10.1016/j.molstruc.2021.131790
[107] Zhao Y, Yan S M, He Y, et al. Synthesis of ultrathin α-zirconium phosphate functionalized with polypyrrole for reinforcing the anticorrosive property of waterborne epoxy coating [J]. Colloids Surf., 2022, 635A: 128052
[108] Li M L, Huang H W, Mo R B, et al. Single-step exfoliation, acidification and covalent functionalization of α-zirconium phosphate for enhanced anticorrosion of waterborne epoxy coatings [J]. Surf. Interfaces, 2021, 23: 100887
[109] Huang H W, Li M L, Tian Y Q, et al. Exfoliation and functionalization of α-zirconium phosphate in one pot for waterborne epoxy coatings with enhanced anticorrosion performance [J]. Prog. Org. Coat., 2020, 138: 105390
[110] Haddadi S A, Amini M, Ghaderi S, et al. Synthesis and cation-exchange behavior of expanded MoS2 nanosheets for anticorrosion applications [J]. Mater. Today: Proc., 2018, 5: 15573
[111] Gao F, Du A, Ma R N, et al. Improved corrosion resistance of acrylic coatings prepared with modified MoS2 nanosheets [J]. Colloids Surf., 2020, 587A: 124318
[112] Duan S, Dou B J, Lin X Z, et al. Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings [J]. Colloids Surf., 2021, 624A: 126836
[113] Wei R Z, Liu Z, Wei W C, et al. Anticorrosion performance of hydrophobic acid-modified-MOFs/epoxy coatings [J]. Colloid Interface Sci. Commun., 2022, 46: 100580
doi: 10.1016/j.colcom.2021.100580
[114] Zhao H R, Liu Z, Cheng Z L. Superior compatible interface and non-conductive two dimensional (2D) Co2(OH)2BDC nanosheets enabled the robust anti-corrosion and anti-friction performance epoxy coating system [J]. Prog. Org. Coat., 2021, 154: 106181
[115] Liu C B, Qian B, Hou P M, et al. Stimulus responsive zeolitic imidazolate framework to achieve corrosion sensing and active protecting in polymeric coatings [J]. ACS Appl. Mater. Interfaces, 2021, 13: 4429
doi: 10.1021/acsami.0c22642
[116] Mohammadpour Z, Zare H R. Fabrication of a pH-sensitive epoxy nanocomposite coating based on a Zn-BTC metal-organic framework containing benzotriazole as a smart corrosion inhibitor [J]. Cryst. Growth Des., 2021, 21: 3954
doi: 10.1021/acs.cgd.1c00284
[117] Yan H, Li W, Li H, et al. Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating [J]. Prog. Org. Coat., 2019, 135: 156
[118] Chen J F, Zhao W J. Silk fibroin-Ti3C2TX hybrid nanofiller enhance corrosion protection for waterborne epoxy coatings under deep sea environment [J]. Chem. Eng. J., 2021, 423: 130195
doi: 10.1016/j.cej.2021.130195
[119] Li X M, Zhou S X. Epoxy-functionalized Ti3C2 nanosheet for epoxy coatings with prominent anticorrosion performance [J]. Prog. Org. Coat., 2022, 162: 106559
[120] Shen L, Zhao W J, Wang K, et al. GO-Ti3C2 two-dimensional heterojunction nanomaterial for anticorrosion enhancement of epoxy zinc-rich coatings [J]. J. Hazard. Mater., 2021, 417: 126048
doi: 10.1016/j.jhazmat.2021.126048
[121] Nie Y, Huang J K, Ma S Y, et al. MXene-hybridized silane films for metal anticorrosion and antibacterial applications [J]. Appl. Surf. Sci., 2020, 527: 146915
doi: 10.1016/j.apsusc.2020.146915
[122] Zhao C C, Zhou M, Yu H B. Interfacial combination of Ti3C2Tx MXene with waterborne epoxy anticorrosive coating [J]. Appl. Surf. Sci., 2022, 572: 150894
doi: 10.1016/j.apsusc.2021.150894
[123] Fan X Q, Yan H, Cai M, et al. Achieving parallelly-arranged Ti3C2Tx in epoxy coating for anti-corrosive/wear high-efficiency protection [J]. Composites, 2022, 231B: 109581
[124] Li S H, Huang H W, Chen F, et al. Reinforced anticorrosion performance of waterborne epoxy coating with eco-friendly L-cysteine modified Ti3C2Tx MXene nanosheets [J]. Prog. Org. Coat., 2021, 161: 106478
[125] Cai M, Yan H, Li Y T, et al. Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application [J]. Chem. Eng. J., 2021, 410: 128310
doi: 10.1016/j.cej.2020.128310
[126] Yan H, Cai M, Li W, et al. Amino-functionalized Ti3C2Tx with anti-corrosive/wear function for waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2020, 54: 144
doi: 10.1016/j.jmst.2020.05.002
[127] Ding J H, Zhao H R, Yu H B. Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings [J]. Chem. Eng. J., 2022, 430: 132838
doi: 10.1016/j.cej.2021.132838
[128] Zhao H R, Ding J H, Zhou M, et al. Air-stable titanium carbide MXene nanosheets for corrosion protection [J]. ACS Appl. Nano Mater., 2021, 4: 3075
doi: 10.1021/acsanm.1c00219
[1] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[2] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[3] MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[4] CAO Jingyi, ZANG Bolin, CAO Baoxue, LI Liang, FANG Zhigang, ZHENG Hongpeng, LIU Li, WANG Fuhui. Influence of Chemical Bonding Interface of Modified Basalt/epoxy Coating on Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[5] LI Yuqiao, SI Weiting, GAO Rongjie. Preparation of Superamphiphobic Surface on Al-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
[6] LEI Yanhua, LIU Ningxuan, ZHANG Yuliang, CHANG Xueting, LIU Tao. Preparation, Corrosion- and Wear-resistance of Polymethyl Methacrylate Coating Modified with Particles of Basalt/cerium Oxide Composite[J]. 中国腐蚀与防护学报, 2022, 42(4): 597-604.
[7] GE Chengyue, LUO Xiangping, WANG Jing, DUAN Jizhou, WANG Ning, HOU Baorong. Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[8] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[9] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[10] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[11] ZHOU Hao, WANG Shengli, LIU Xuefeng, YOU Shijie. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[12] SUN Weisong, YU Sirong, GAO Song, YAO Xinkuan, XU Hailiang, QIAN Bing, WANG Bingzi. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[13] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[14] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[15] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
No Suggested Reading articles found!