Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 191-196    DOI: 10.11902/1005.4537.2022.061
Current Issue | Archive | Adv Search |
Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution
GAO Zhiyue(), JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue
State Grid Shandong Electric Power Research Institute, Ji'nan 250001, China
Download:  HTML  PDF(4174KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of three metal materials (Q235 steel, galvanized steel and pure copper) in an artificial solution, aiming to simulate the typical alkaline soil solution of Shandong province, was studied by means of electrochemical testing technique, optical metallographic microscope and laser confocal microscope (CLSM). The results show that the corrosion degree of the three metal materials is varied in the simulated alkaline soil solution. The anodic processes of them are all metal dissolution, while the cathodic processes are all oxygen absorption reaction. The corrosion resistance of Q235 steel is the worst. Q235 steel and galvanized steel show the characteristics of uniform corrosion. Pitting occurs on the surface of pure copper. Generally, the corrosion resistance of the three metals may be ranked as follows: pure copper>galvanized steel>Q235 steel.

Key words:  grounding materials      alkaline soil simulation solution      electrochemical corrosion      pitting     
Received:  07 March 2022      32134.14.1005.4537.2022.061
ZTFLH:  TG172  
Fund: Science and Technology Project of State Grid Shandong Electric Power Company(52062620004K)

Cite this article: 

GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 191-196.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.061     OR     https://www.jcscp.org/EN/Y2023/V43/I1/191

Fig.1  Nyquist (a) and Bode (b) plots of three metal materials in alkaline soil simulation solution, and impedance equivalent circuits of Q235 steel and pure copper (c) and galvanized steel (d)
SampleRs / Ω·cm2Qf / Ω-1·cm-2·s-nnRf / Ω·cm2Qdl / Ω-1·cm-2·s-nnRct / Ω·cm2L / H·cm2
Q235 steel58.71.85×10-80.9625.349.21×10-40.77214.1---
Galvanized steel86.031.73×10-50.99355.71.19×10-50.99298.57.14×10-7
Pure copper95.242.20×10-40.878.278.23×10-40.61683.4---
Table 1  Fitting parameters of EIS of three metal materials in alkaline soil simulation solution
SampleEcorr vs. SCE / VIcorr / A·cm-2βa / Vβc / V
Q235 steel-0.7807.943×10-50.169-0.292
Galvanized steel-1.0092.301×10-50.070-0.329
Pure copper-0.1832.148×10-50.099-0.255
Table 2  Fitting results of polarization curves of three metal materials in alkaline soil simulation solution
Fig.2  Polarization curves of three metal materials in alkaline soil simulation solution
Fig.3  Surface morphologies of Q 235 steel (a), galvanized steel (b) and pure copper (c) after polarization in alkaline soil simulation solution
Fig.4  2D morphologies (a1-c1), 3D morphologies (a2-c2) and depth of neutral line (a3-c3) of Q235 carbon steel (a), galvanized steel (b) and pure copper (c) after polarization in alkaline soil simulation solution
1 Tian P H, Tan B, Tong X F, et al. Accelerated corrosion performance comparison of several new grounding materials [J]. Corros. Prot., 2021, 42: 63
田鹏辉, 谭波, 童雪芳 等. 几种新型接地材料的加速腐蚀性能对比 [J]. 腐蚀与防护, 2021, 42: 63
2 Su Y G, Fang B L, Lv P H, et al. Initial corrosion behavior of grounding materials in three typical soils in shaanxi province [J]. Corros. Sci. Prot. Technol., 2018, 30: 279
苏耀国, 房本岭, 吕平海 等. 接地材料在陕西典型土壤中的初期腐蚀行为 [J]. 腐蚀科学与防护技术, 2018, 30: 279
3 Zhu Y C, Liu G M, Liu X, et al. Investigation on interrelation of field corrosion test and accelerated corrosion test of grounding materials in red soil environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 550
朱亦晨, 刘光明, 刘欣 等. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 550
4 Ding C, Zhang J L, Yu Y C, et al. Corrosion kinetics of A572Gr.65 steel in different simulated soil solutions [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 149
丁聪, 张金玲, 于彦冲 等. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学 [J]. 中国腐蚀与防护学报, 2022, 42: 149
5 Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
6 Wang X H, Yang Y, Chen Y C, et al. Effect of alternating current on corrosion behavior of X100 pipeline steel in a simulated solution for soil medium at korla district [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 259
王新华, 杨永, 陈迎春 等. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 259
7 Zhao B Z, Zhu M, Yuan Y F, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
赵宝珠, 朱敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究 [J]. 中国腐蚀与防护学报, 2022, 42: 425
8 Yan F J, Li X G, Jiang B, et al. Corrosion behavior of pure copper in alkaline soil [J]. Corros. Sci. Prot. Technol., 2019, 31: 155
闫风洁, 李辛庚, 姜波 等. 纯铜在碱性土壤中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2019, 31: 155
9 Chen K F, Zhang Z D, Hu J Y, et al. Research on corrosion behavior of four kinds of metal grounding materials in soil leaching solution [J]. Mater. Prot., 2018, 51(12): 12
陈科锋, 张兆德, 胡家元 等. 4种接地金属材料在土壤浸出液中的腐蚀行为研究 [J]. 材料保护, 2018, 51(12): 12
10 Zhu Y C, Liu G M, Wang J J, et al. Electrochemical corrosion behaviors of typical grounding materials in water-saturated acid red soil [J]. Mater. Mech. Eng., 2020, 44(9): 36
朱亦晨, 刘光明, 王金金 等. 典型接地材料在水饱和酸性红壤中的电化学腐蚀行为 [J]. 机械工程材料, 2020, 44(9): 36
11 Yu J F, Zhan Y Z. Electrochemical impedance spectroscopy (EIS) of Q235 steel in acidic soil [J]. Hubei Electr. Power, 2010, 34(6): 25
余建飞, 詹约章. Q235钢在酸性土壤中的电化学阻抗谱特征 [J]. 湖北电力, 2010, 34(6): 25
12 Yu J F, Zhou X J, Zhang Y, et al. Corrosion behavior of sherardizing steel in different soils at four typical test sites [J]. Corros. Sci. Prot. Technol., 2019, 31: 128
余建飞, 周学杰, 张予 等. 渗锌钢在4种典型土壤环境中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2019, 31: 128
13 Zhu M, Du C W, Li X G, et al. Corrosion behavior of Q235 steel in beijing soil environment [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 199
朱敏, 杜翠薇, 李晓刚 等. Q235钢在北京土壤环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2013, 33: 199
14 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
唐荣茂, 朱亦晨, 刘光明 等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
15 Chen W, Jiao X Y, Zhao Z Q, et al. Corrosion behavior of hot-dip zinc-coated steel in soil environment of Northern China [J]. Electroplat. Finish., 2021, 40: 1646
陈威, 焦小雨, 赵自强 等. 热镀锌钢在中国北方土壤环境中的腐蚀行为 [J]. 电镀与涂饰, 2021, 40: 1646
16 Li H L, Wan H X, Du C W. Corrosion behavior of galvanized steel in typical soil environments [J]. Corros. Prot., 2018, 39: 387
李海玲, 万红霞, 杜翠薇. 镀锌钢在多种典型土壤环境中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 387
17 Hamlaoui Y, Tifouti L, Pedraza F. Corrosion behaviour of molybdate-phosphate-silicate coatings on galvanized steel [J]. Corros. Sci., 2009, 51: 2455
doi: 10.1016/j.corsci.2009.06.037
18 Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
19 Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment [J]. Acta Metall. Sin., 2017, 53: 575
万红霞, 宋东东, 刘智勇 等. 交流电对X80钢在近中性环境中腐蚀行为的影响 [J]. 金属学报, 2017, 53: 575
20 Mokaddem M, Volovitch P, Ogle K. The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel [J]. Electrochim. Acta, 2010, 55: 7867
doi: 10.1016/j.electacta.2010.02.020
21 Yan C Q, Liu Y L, Zhang J, et al. Synergistic effect of glycine and BTA on step height reduction efficiency after copper CMP in weakly alkaline slurry [J]. ECS J. Solid State Sci. Technol., 2017, 6: P1
doi: 10.1149/2.0291612jss
[1] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[2] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[3] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[4] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[5] MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[6] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[7] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[8] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[9] GUO Na, MAO Xiaomin, HUI Xinrui, GUO Zhangwei, LIU Tao. Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
[10] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[11] WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[12] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[13] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[14] XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo. Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[15] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
No Suggested Reading articles found!