Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 197-201    DOI: 10.11902/1005.4537.2022.022
Current Issue | Archive | Adv Search |
Laboratory Simulation of Crud Deposition on Zr-alloy Fuel Cladding in Simulated Pressurized Water Reactor Primary Coolant
LIAO Jiapeng(), MAO Yulong, JIN Desheng, LI Jinggang
China Nuclear Power Technology Research Institute, Shenzhen 518000, China
Download:  HTML  PDF(5438KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For pressurized water reactor (PWR) nuclear power plant, crud on fuel cladding is derived from primary corrosion products, which deposit on the surface of fuel assembly. Crud deposition is affected by the coupling effects between the primary coolant environment and the thermal-hydraulic condition. The crud on cladding surface can affect the operation safety and economic benefits of the reactor. In this paper, the main factors affecting the crud deposition behavior on the surface of fuel cladding were described. The crud deposition process on the domestic Zr-alloy cladding was assessed via a home-made experimental set. As a result, the porous and chimney-like crud was successfully reproduced, while which composed mainly of NiFe2O4, Fe2O3 and NiO, besides the precipitation of LiBO2 was detected. The experiment results indicated that the crud deposition on PWR fuel cladding could be reliably reproduced through laboratory simulation.

Key words:  pressurized water reactor      zirconium alloy cladding      crud deposition      primary coolant     
Received:  18 January 2022      32134.14.1005.4537.2022.022
ZTFLH:  TG172  
Fund: China Postdoctoral Science Foundation(2021M703023)

Cite this article: 

LIAO Jiapeng, MAO Yulong, JIN Desheng, LI Jinggang. Laboratory Simulation of Crud Deposition on Zr-alloy Fuel Cladding in Simulated Pressurized Water Reactor Primary Coolant. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 197-201.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.022     OR     https://www.jcscp.org/EN/Y2023/V43/I1/197

Fig.1  Schematic diagram of crud deposition test device
Fig.2  Macro surface morphology of the sample after crud deposition test
Fig.3  Micro surface morphology (a) and high-magnifica-tion image (b) of the sample after crud deposition test
Fig.4  Macro cross-sectional morphologies of the sample after fuel crud test at 0° (a), 90° (b), 180° (c) and 270° (d) indicate the four circumferential regions
Fig.5  Micro cross-sectional morphology of the sample after fuel crud test
Fig.6  XPS fine spectra of B1s (a), O1s (b), Fe2p3/2 (c) and Ni2p3/2 (d) in fuel crud formed on the sample during crud deposition test
1 Deshon J, Hussey D, Kendrick B, et al. Pressurized water reactor fuel crud and corrosion modeling [J]. JOM, 2011, 63: 64
2 Bennett P, Beverskog B, Suther R. Halden in-reactor test to exhibit PWR axial offset anomaly [R]. Palo Alto: EPRI, 2004
3 Armstrong B, Bosma J, Cheng B, et al. PWR axial offset anomaly (AOA) guidelines [R]. Palo Alto: EPRI, 1999
4 Tigeras A, Debec G, Jeannin B, et al. EDF zinc injection: Analysis of power reduction impact on the chemistry and radiochemistry parameters [A]. Proceedings of the International Conference on Water Chemistry in Nuclear Power Plants [C]. Jeju Island, Korea, 2006
5 Thom J R S, Walker W M, Fallon T A, et al. Boiling in subcooled water during flow up heated tubes or annuli [A]. Symposium on Boiling Heat Transfer in Steam Generating Units and Heat Exchangers [C]. Manchester, 1965
6 Steiner D, Taborek J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model [J]. Heat Transfer. Eng., 1992, 13: 43
doi: 10.1080/01457639208939774
7 Park M S, Shim H S, Baek S H, et al. Effects of oxidation states of fuel cladding surface on crud deposition in simulated primary water of PWRs [J]. Ann. Nucl. Energy, 2017, 103: 275
doi: 10.1016/j.anucene.2017.01.014
8 Li Z D, Cui Z D, Hou X Y, et al. Corrosion property of nuclear grade 316LN stainless steel weld joint in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 106
李兆登, 崔振东, 侯相钰 等. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 106
9 Kim K, Fruzzetti K, Garcia S, et al. Assessment of EPRI water chemistry guidelines for new nuclear power plants [A]. NPC 2010 Conference Proceedings [C]. Quebec City, Canada, 2010
10 Baek S H, Shim H S, Kim J G, et al. Effects of dissolved hydrogen on fuel crud deposition and subcooled nucleate boiling in PWR primary water at 328 °C [J]. Nucl. Eng. Des., 2019, 345: 85
doi: 10.1016/j.nucengdes.2019.02.010
11 Daniel M W, Richard B, Ryuji U. Impact of PWR primary water dissolved hydrogen concentration on fuel crud and boron accμmulation [A]. NPC 2016 [C]. Brighton, UK, 2016
12 Deshon J. Zinc acetate impact on AOA [R]. Palo Alto: EPRI, 2001
13 Henshaw J, Gibson C, McGurk J, et al. Zinc Chemistry in PWR Fuel Crud [A]. NPC 2016 [C]. Brighton, United Kingdom, 2016
14 Yang M X, Gao Y, Wang H. Effect of Zn(CH3COO)2 addition on corrosion of ZIRLO alloy in simulated PWR primary loop medium with LiOH and H3BO3 [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 199
杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 199
15 Kima K S, Shima H S, Baeka S H. Characterization of fuel crud deposited in simulated PWR primary coolant with different zinc addition [A]. Transactions of the Korean Nuclear Society Autumn Meeting [C]. Goyang, 2019
16 Riess R. Chemistry experience in the primary heat transport circuits of Kraftwerk Union pressurized water reactors [J]. Nucl. Technol., 1976, 29: 153
doi: 10.13182/NT76-A31574
17 Zhou D W, Jones B G. Boron concentration model and effects of boron holdup on axial offset anomaly (AOA) in PWRs [A]. 10th International Conference on Nuclear Engineering [C]. Arlington, 2002
18 Henshaw J, McGurk J C, Sims H E, et al. A model of chemistry and thermal hydraulics in PWR fuel crud deposits [J]. J. Nucl. Mater., 2006, 353: 1
doi: 10.1016/j.jnucmat.2005.01.028
19 Seo S, Park B, Kim S J, et al. BOTANI: High-fidelity Multiphysics model for boron chemistry in CRUD deposits [J]. Nucl. Eng. Technol., 2021, 53: 1676
doi: 10.1016/j.net.2020.11.008
20 Jung Y H, Baik S E, Jin Y G. A study on the crystalline boron analysis in CRUD in spent fuel cladding using EPMA X-ray images [J]. Corro. Sci. Technol., 2020, 19: 1
[1] LI Chunlin, SHI Hongwei, LIANG Guoping, LI Li, WANG Hao, WANG Wei, LIU Fuchun, HAN En-Hou. Corrosion Resistance and Aging Mechanism of Polyurethane Topcoat for High-speed Train[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] ZHOU Xin, WU Dakang, CHENG Xu, HU Junying, ZHONG Xiankang. Research Progress of Detection Techniques for Permeated Hydrogen[J]. 中国腐蚀与防护学报, 2023, 43(6): 1203-1215.
[3] GUO Zhao, LI Han, CUI Zhongyu, WANG Xin, CUI Hongzhi. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[4] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[5] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[6] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[7] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[8] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[9] . Comparison of corrosion resistance of Zr-based amorphous alloys and traditional alloys in seawater[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[10] . Study on corrosion behavior of photovoltaic pile foundation steel in soil of Xinjiang[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[11] . Evaluation and screening of atmospheric corrosion prediction algorithms of various steels in different regions of China[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[12] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[13] HU Jiezhen, LAN Wenjie, DENG Peichang, WU Jingquan, ZENG Junhao. Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[14] SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[15] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
No Suggested Reading articles found!