|
|
Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution |
CHEN Tingting1,2, WU Xiaolei2,3, HAN Peide1( ) |
1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 3. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China |
|
Cite this article:
CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 973-978.
|
Abstract A kind of gradient structure on the surface of S31254 super austenitic stainless steel was prepared by surface mechanical attrition treatment (SMAT) technology. The gradient structure was characterized by microstructural analysis and electrochemical test, while the variation of corrosion characteristics along the depth of the gradient structure was also studied in 10%NaCl solution. The results show that after SMAT treatment, the surface of S31254 steel emerged a structure composed of two gradient layers, while a coarse-grained layer inserted in between the two layers. In the gradient layer, the density of the nanoscale deformation twins shows a gradient distribution along the depth direction. Through mechanically thinning the gradient structure layer by layer and followed by electrochemical detection in the NaCl solution, it is revealed that nearby the location at depth of 80 μm exhibits the best corrosion resistance, which may be ascribed to that the prepared surface was smoother with higher twin density.
|
Received: 04 December 2021
|
|
Fund: National Natural Science Foundation of China(51871159);National Natural Science Foundation of China(11972350);National Natural Science Foundation of China(11890680) |
About author: HAN Peide, E-mail: hanpeide@tyut.edu.cn
|
[1] |
Wu C C, Wang S H, Chen C Y, et al. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel [J]. Scr. Mater., 2007, 56: 717
doi: 10.1016/j.scriptamat.2006.08.064
|
[2] |
Abd El Meguid E A, Abd El Latif A A. Critical pitting temperature for type 254 SMO stainless steel in chloride solutions [J]. Corros. Sci., 2007, 49: 263
doi: 10.1016/j.corsci.2006.06.011
|
[3] |
Xu Y Q, Zhao C H, Ma H W, et al. Research on the welding technique of 254SMo super austeitic stainless steel [J]. Elec. Weld. Mach., 2013, 43(5): 142
|
|
(徐玉强, 赵翠华, 马洪伟 等. 超级奥氏体不锈钢254SMo焊接工艺 [J]. 电焊机, 2013, 43(5): 142)
|
[4] |
Zheng S P, Yu Y. Corrosion resistant properties & welding of 6%Mo super austenitic stainless steel [J]. China Chem. Ind. Equip., 2013, 15(4): 26
|
|
(郑世平, 于洋. 6%Mo超级奥氏体不锈钢耐蚀特性及其焊接 [J]. 中国化工装备, 2013, 15(4): 26)
|
[5] |
Bai Y J, Liu J, Lv X G, et al. Corrosion resistance of super austenitic stainless steel 254SMo welded joint [J]. Weld. Join., 2016, (9): 21
|
|
(白永杰, 刘洁, 吕孝根 等. 超级奥氏体不锈钢254Smo焊接接头耐蚀性能 [J]. 焊接, 2016, (9): 21)
|
[6] |
Wang C G, Wei J, Wei X, et al. Crevice corrosion behavior of several super stainless steels in a simulated corrosive environment of flue gas desulfurization process [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 43
|
|
(王长罡, 魏洁, 魏欣 等. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 43)
|
[7] |
Sun C Q. Development, application and characteristic of super austenitic stainless steel [J]. Process Equip. Des., 1999, 36(6): 38
|
|
(孙长庆. 超级奥氏体不锈钢的发展, 性能与应用 (上) [J]. 化工设备设计, 1999, 36(6): 38)
|
[8] |
Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
|
|
(赵康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493)
|
[9] |
Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
|
|
(伊璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288)
|
[10] |
Lu K. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1
|
|
(卢柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1)
doi: 10.11900/0412.1961.2014.00395
|
[11] |
Hao Y W, Deng B, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel [J]. J. Iron. Steel Res. Int., 2009, 16: 68
|
[12] |
Balusamy T, Kumar S, Sankara Narayanan T S N. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel [J]. Corros. Sci., 2010, 52: 3826
doi: 10.1016/j.corsci.2010.07.004
|
[13] |
Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT [J]. Acta Mater., 2004, 52: 4101
doi: 10.1016/j.actamat.2004.05.023
|
[14] |
Li J S, Gao W D, Cao Y, et al. Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening [J]. Adv. Eng. Mater., 2018, 20: 1800402
doi: 10.1002/adem.201800402
|
[15] |
Wang H T, Tao N R, Lu K. Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel [J]. Scr. Mater., 2013, 68: 22
doi: 10.1016/j.scriptamat.2012.05.041
|
[16] |
Wang J J, Tao N R, Lu K. Revealing the deformation mechanisms of nanograins in gradient nanostructured Cu and CuAl alloys under tension [J]. Acta Mater., 2019, 180: 231
doi: 10.1016/j.actamat.2019.09.021
|
[17] |
Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, 375-377A: 38
|
[18] |
Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578
pmid: 24136963
|
[19] |
Hughes D A, Hansen N. Graded nanostructures produced by sliding and exhibiting universal behavior [J]. Phys. Rev. Lett., 2001, 87: 135503
doi: 10.1103/PhysRevLett.87.135503
|
[20] |
Wang X, Li Y S, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. J. Mater. Sci. Technol., 2017, 33: 758
doi: 10.1016/j.jmst.2016.11.006
|
[21] |
Zhang Y, Meng G Z, Shao Y W, et al. Electrochemical corrosion behavior of nickel coating with high density of nano-scale twins [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 99
|
|
(张义, 孟国哲, 邵亚薇 等. 高密度纳米孪晶镍镀层的电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2009, 29: 99)
|
[22] |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: 559
|
[23] |
Chen X D, Li Y S, Zhu Y T, et al. Layer-by-layer corrosion behavior of 316LN stainless steel with a gradient-nanostructured surface [J]. Electrochem. Commun., 2020, 110: 106642
doi: 10.1016/j.elecom.2019.106642
|
[24] |
Hills G J, Peter L M, Scharifker B R, et al. The nucleation and growth of two-dimensional anodic films under galvanostatic conditions [J]. J. Electroanal. Chem. Interfacial Electrochem., 1981, 124: 247
doi: 10.1016/S0022-0728(81)80302-6
|
[25] |
Heuer A H, Kahn H, Ernst F, et al. Enhanced corrosion resistance of interstitially hardened stainless steel: implications of a critical passive layer thickness for breakdown [J]. Acta Mater., 2012, 60: 716
doi: 10.1016/j.actamat.2011.10.004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|