Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 973-978    DOI: 10.11902/1005.4537.2021.349
Current Issue | Archive | Adv Search |
Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution
CHEN Tingting1,2, WU Xiaolei2,3, HAN Peide1()
1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
3. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 973-978.

Download:  HTML  PDF(2545KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A kind of gradient structure on the surface of S31254 super austenitic stainless steel was prepared by surface mechanical attrition treatment (SMAT) technology. The gradient structure was characterized by microstructural analysis and electrochemical test, while the variation of corrosion characteristics along the depth of the gradient structure was also studied in 10%NaCl solution. The results show that after SMAT treatment, the surface of S31254 steel emerged a structure composed of two gradient layers, while a coarse-grained layer inserted in between the two layers. In the gradient layer, the density of the nanoscale deformation twins shows a gradient distribution along the depth direction. Through mechanically thinning the gradient structure layer by layer and followed by electrochemical detection in the NaCl solution, it is revealed that nearby the location at depth of 80 μm exhibits the best corrosion resistance, which may be ascribed to that the prepared surface was smoother with higher twin density.

Key words:  super austenitic stainless steel      surface mechanical attrition treatment (SMAT)      gradient structure      nanotwin      electrochemical corrosion     
Received:  04 December 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51871159);National Natural Science Foundation of China(11972350);National Natural Science Foundation of China(11890680)
About author:  HAN Peide, E-mail: hanpeide@tyut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.349     OR     https://www.jcscp.org/EN/Y2022/V42/I6/973

Fig.1  Microstructures of CG and GS samples in cross section: (a) BC map of CG; (b) IPF map of CG; (c) BC map of GS; (d) IPF map of GS
Fig.2  Microstructures of GS samples in cross section: (a) BC map of GS in 300 μm deep; (b) IPF map of GS in 300 μm deep; (c) BC map of GS in 10 μm deep; (d) IPF map of GS in 10 μm deep
Fig.3  Bright field image at surface (a) and bright field image at depth of 40 μm (b). Inset in each map: the corresponding selected area electron diffraction (SAED) pattern of twin, all with the [011] zone axis
Fig.4  Distribution of HV values in cross section of GS specimen
Fig.5  Potentiodynamic polarization curves from 40 μm to 80 μm layer (a), from 80 μm to 230 μm (b) in 10%NaCl solution of GS specimenand Ecorr and Epit distance curves (c)
Fig.6  Nyquist (a, c) and Bode (b, d) diagrams of impedance spectra from the 40 μm layer to the 80 μm layer (a, b) and from the 80 μm layer to the 230 μm layer (c, d) in 10%NaCl solution of GS specimen
[1] Wu C C, Wang S H, Chen C Y, et al. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel [J]. Scr. Mater., 2007, 56: 717
doi: 10.1016/j.scriptamat.2006.08.064
[2] Abd El Meguid E A, Abd El Latif A A. Critical pitting temperature for type 254 SMO stainless steel in chloride solutions [J]. Corros. Sci., 2007, 49: 263
doi: 10.1016/j.corsci.2006.06.011
[3] Xu Y Q, Zhao C H, Ma H W, et al. Research on the welding technique of 254SMo super austeitic stainless steel [J]. Elec. Weld. Mach., 2013, 43(5): 142
(徐玉强, 赵翠华, 马洪伟 等. 超级奥氏体不锈钢254SMo焊接工艺 [J]. 电焊机, 2013, 43(5): 142)
[4] Zheng S P, Yu Y. Corrosion resistant properties & welding of 6%Mo super austenitic stainless steel [J]. China Chem. Ind. Equip., 2013, 15(4): 26
(郑世平, 于洋. 6%Mo超级奥氏体不锈钢耐蚀特性及其焊接 [J]. 中国化工装备, 2013, 15(4): 26)
[5] Bai Y J, Liu J, Lv X G, et al. Corrosion resistance of super austenitic stainless steel 254SMo welded joint [J]. Weld. Join., 2016, (9): 21
(白永杰, 刘洁, 吕孝根 等. 超级奥氏体不锈钢254Smo焊接接头耐蚀性能 [J]. 焊接, 2016, (9): 21)
[6] Wang C G, Wei J, Wei X, et al. Crevice corrosion behavior of several super stainless steels in a simulated corrosive environment of flue gas desulfurization process [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 43
(王长罡, 魏洁, 魏欣 等. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 43)
[7] Sun C Q. Development, application and characteristic of super austenitic stainless steel [J]. Process Equip. Des., 1999, 36(6): 38
(孙长庆. 超级奥氏体不锈钢的发展, 性能与应用 (上) [J]. 化工设备设计, 1999, 36(6): 38)
[8] Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
(赵康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493)
[9] Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
(伊璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288)
[10] Lu K. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1
(卢柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1)
doi: 10.11900/0412.1961.2014.00395
[11] Hao Y W, Deng B, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel [J]. J. Iron. Steel Res. Int., 2009, 16: 68
[12] Balusamy T, Kumar S, Sankara Narayanan T S N. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel [J]. Corros. Sci., 2010, 52: 3826
doi: 10.1016/j.corsci.2010.07.004
[13] Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT [J]. Acta Mater., 2004, 52: 4101
doi: 10.1016/j.actamat.2004.05.023
[14] Li J S, Gao W D, Cao Y, et al. Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening [J]. Adv. Eng. Mater., 2018, 20: 1800402
doi: 10.1002/adem.201800402
[15] Wang H T, Tao N R, Lu K. Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel [J]. Scr. Mater., 2013, 68: 22
doi: 10.1016/j.scriptamat.2012.05.041
[16] Wang J J, Tao N R, Lu K. Revealing the deformation mechanisms of nanograins in gradient nanostructured Cu and CuAl alloys under tension [J]. Acta Mater., 2019, 180: 231
doi: 10.1016/j.actamat.2019.09.021
[17] Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, 375-377A: 38
[18] Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578 pmid: 24136963
[19] Hughes D A, Hansen N. Graded nanostructures produced by sliding and exhibiting universal behavior [J]. Phys. Rev. Lett., 2001, 87: 135503
doi: 10.1103/PhysRevLett.87.135503
[20] Wang X, Li Y S, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. J. Mater. Sci. Technol., 2017, 33: 758
doi: 10.1016/j.jmst.2016.11.006
[21] Zhang Y, Meng G Z, Shao Y W, et al. Electrochemical corrosion behavior of nickel coating with high density of nano-scale twins [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 99
(张义, 孟国哲, 邵亚薇 等. 高密度纳米孪晶镍镀层的电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2009, 29: 99)
[22] Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: 559
[23] Chen X D, Li Y S, Zhu Y T, et al. Layer-by-layer corrosion behavior of 316LN stainless steel with a gradient-nanostructured surface [J]. Electrochem. Commun., 2020, 110: 106642
doi: 10.1016/j.elecom.2019.106642
[24] Hills G J, Peter L M, Scharifker B R, et al. The nucleation and growth of two-dimensional anodic films under galvanostatic conditions [J]. J. Electroanal. Chem. Interfacial Electrochem., 1981, 124: 247
doi: 10.1016/S0022-0728(81)80302-6
[25] Heuer A H, Kahn H, Ernst F, et al. Enhanced corrosion resistance of interstitially hardened stainless steel: implications of a critical passive layer thickness for breakdown [J]. Acta Mater., 2012, 60: 716
doi: 10.1016/j.actamat.2011.10.004
[1] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[2] HE Zhihao, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[3] GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[4] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[5] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[6] WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[7] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[8] Yuan SHI,Zhuji JIN,Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG. Electrochemical Corrosion of YG15 Cemented Carbide[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[9] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[10] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[11] Jiamei WANG,Hui LU,Zhengang DUAN,Lefu ZHANG,Fanjiang MENG,Xuelian XU. Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[12] Ning ZHANG,Huyuan SUN,Lijuan SUN,Shuan LIU. Electrochemical Corrosion Behavior of X80 Pipeline Steel in a Simulated Soil Solution for Coastal Tidal Flat Wetland[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
[13] LIANG Ping,WANG Ying. Electrochemical Behavior of X80 Steel Covered by A Rust Layer Formed after Short-term Corrosion[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
[14] ZHANG Yu, WANG Jun, SHI Shukun, WANG Yuansheng. EFFECT OF AGING ON ELECTROCHEMICAL CORROSION BEHAVIOR OF 2205 DUPLEX STAINLESS STEEL IN SULFUR ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 496-500.
[15] Yanchun Lou; Fangxin Zhao; Bo Yu; Jingcheng Wang; Yunlong Xiong. ELECTROCHEMICAL CORROSION AND CAVITATION EROSION BEHAVIOR OF Cr-Ni HYDRAULEC TURBINE MATERIAL[J]. 中国腐蚀与防护学报, 2005, 25(5): 312-316 .
No Suggested Reading articles found!