Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 845-850    DOI: 10.11902/1005.4537.2021.261
Current Issue | Archive | Adv Search |
Analysis on Cracking Phenomenon of a Hot-rolling Cu-bearing Weathering Steel
WANG Lei1(), DONG Junhua2, GU Huaizhang1, KE Wei3
1.School of Life and Health Science, Kaili University, Kaili 556011, China
2.Shenyang National Laboratory for Matericals Science, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Environmental Corrosion Research Center for Materials, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(9230KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cracking phenomenon of a hot-rolled Cu-bearing weathering steel was analyzed by means of micromorphology observation and EPMA surface examination. The distribution characteristics of Mn and S in the hot-rolled Cu-bearing steel and the formed oxide scale are preliminarily assessed, the different enrichment characteristics of Cu-rich phase in copper-bearing steels before and after hot-rolling are comparatively analyzed, and three modes of cracking of hot-rolled Cu bearing weathering steel are put forward. With the synergistic action of hot rolling stress, the grain boundary oxidation, internal oxidation of steel at grain boundary and the enrichment of Cu rich phase in the crack will promote the further serious cracking of the steel.

Key words:  Cu-containing steel      cracking      Cu rich phase      steel/scale interface     
Received:  27 September 2021     
ZTFLH:  TG142  
Fund: Doctoral Start Fund of Kaili University(BS201814);National Natural Science Foundation of China(31760191)
Corresponding Authors:  WANG Lei     E-mail:  2015163582@qq.com
About author:  WANG Lei, E-mail: 2015163582@qq.com

Cite this article: 

WANG Lei, DONG Junhua, GU Huaizhang, KE Wei. Analysis on Cracking Phenomenon of a Hot-rolling Cu-bearing Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 845-850.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.261     OR     https://www.jcscp.org/EN/Y2022/V42/I5/845

Fig.1  Image of surface crazing on the steel corner
Fig.2  Optical microstructure of the Cu-containing weathering steel center (a) and surface crazing on the steel corner (b, c) and SEM images of mircrostructure of the steel
Fig.3  Optical microstructures of steel surface crazing (a) and the detail of the selected rectangle area in Fig.3a (b)
Fig.4  Optical microstructures (a, b) and SEM images (c, d) of steel surface crazing (a, c) and the detail of the selected rectangle area in Fig.4a (b) and Fig.4c (d)
Fig.5  BSE images of cracked sample after hot rolling (a) and non-cracked sample (b) and the distribution of O, Fe, Cu, Mn and S
Fig.6  Images of Cu rich phase in penetrating crack: distribution of Cu in area A (a), optical microstructure (area A in Fig.6a) (b) and SEM image of area A in Fig.6a (c)
1 Wang D Y. Concise Forging Manual [M]. Beijing: Machinery Industry Press, 2004: 3
王德拥. 简明锻工手册 [M]. 北京: 机械工业出版社, 2004: 3
2 Melford D A. Surface hot shortness in mild steel [J]. J. Iron Steel Inst., 1962, 200: 290
3 Nicholson A, Murray J D. Surface hot shortness in low-carbon steel [J]. J. Iron Steel Inst., 1965, 203: 1007
4 Salter W J M. Effects of alloying elements on solubility and surface energy of copper in mild steel [J]. J. Iron Steel Inst., 1966, 204: 478
5 Fisher G L. The effect of nickel on the high-temperature oxidation characteristics of copper-bearing steels [J]. J. Iron Steel Inst., 1969, 207: 1010
6 Hydrean P P, Kitchin A L, Schaller F W. Hot rolling and heat treatment of Ni-Cu-Cb(Nb) steel [J]. Metall. Trans., 1971, 2: 2541
7 Le May I, Schetky L M. Copper in Iron and Steel [M]. New York: John Wiley & Sons, 1982: 45
8 Suzuki H G. Strain rate dependence of Cu embrittlement in steels [J]. ISIJ Int., 1997, 37: 250
doi: 10.2355/isijinternational.37.250
9 Shao W R, Wang Y L, Chen N J, et al. The effect of copper segregation on cracks of hot-rolled light gauge strips in CSP line [J]. J. Chin. Electr. Microsc. Soc., 2002, 21: 731
邵伟然, 王元立, 陈南京 等. CSP工艺热轧钢带中Cu的偏聚对裂纹的影响 [J]. 电子显微学报, 2002, 21: 731
10 Shibata K, Seo S J, Kaga M, et al. Suppression of surface hot shortness due to Cu in recycled steels [J]. Mater. Trans., 2002, 43: 292
doi: 10.2320/matertrans.43.292
11 Li Y, Song B, Mao J H, et al. Copper precipitation behavior in Cu-Fe alloys [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 579
李岩, 宋波, 毛璟红 等. Fe-Cu合金体系中Cu析出规律 [J]. 北京科技大学学报, 2009, 31: 579
12 Wang L, Zhang S X, Dong J H, et al. Surface crazing of Mn-Cu weathering steel [J]. Acta Metall. Sin., 2010, 46: 723
doi: 10.3724/SP.J.1037.2010.00723
王雷, 张思勋, 董俊华 等. Mn-Cu耐候钢的表面龟裂 [J]. 金属学报, 2010, 46: 723
doi: 10.3724/SP.J.1037.2009.00501
13 Wang L, Dong J H, Han D, et al. Phenonmenon of Cu segregation in Cu-containing steel during soaking at 1150 ℃ [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 545
王雷, 董俊华, 韩达 等. 含铜钢在1150 ℃高温保温条件下的铜偏聚现象 [J]. 中国腐蚀与防护学报, 2020, 40: 545
14 Zhang Y B. Application of high-performance weather-proof steel in steel plate composite beam bridge [J]. Constr. Des. Project, 2020, (3): 236
张钰伯. 高性能耐候钢在钢板组合梁桥中的应用 [J]. 工程建设与设计, 2020, (3): 236
15 Cheng P, Huang X Q, Pang T, et al. Research status and development trend of weathering bridge steel [J]. Mater. Prot., 2020, 53(7): 142
程鹏, 黄先球, 庞涛 等. 耐候桥梁钢的研究现状与发展趋势 [J]. 材料保护, 2020, 53(7): 142
16 Wang C S, Zhang J W, Duan L, et al. Research progress and engineering application of long lasting high performance weathering steel bridges [J]. J. Traffic Trans. Eng., 2020, 20(1): 1
王春生, 张静雯, 段兰 等. 长寿命高性能耐候钢桥研究进展与工程应用 [J]. 交通运输工程学报, 2020, 20(1): 1
17 Hao X H, Dong J H, Wei J, et al. Influence of microstructure of AH32 corrosion resistant steel on corrosion behavior [J]. Acta Metall. Sin., 2012, 48: 534
doi: 10.3724/SP.J.1037.2012.00105
郝雪卉, 董俊华, 魏洁 等. AH32耐蚀钢显微组织对其腐蚀行为的影响 [J]. 金属学报, 2012, 48: 534
doi: 10.3724/SP.J.1037.2012.00105
18 Lu Y F, Dong J H, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2015, 31: 1047
doi: 10.1016/j.jmst.2014.10.013
19 Hao X H, Dong J H, Wei J, et al. Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank [J]. Corros. Sci., 2017, 121: 84
doi: 10.1016/j.corsci.2017.03.012
20 Huo X W. Formation reason and control measure of surface crazing of maglev vehicle sleeper weather resisting H beam [J]. Shandong Metall., 2021, 43(3): 3
霍喜伟. 磁浮列车轨枕用耐候H型钢表面龟裂的成因及控制 [J]. 山东冶金, 2021, 43(3): 3
21 Gao Y, Zhou X, Wang X D, et al. Study on defect analysis and control measures of copper-brittleness of dual phase steel containing copper [J]. Hot Work. Technol., 2017, 46: 246
高月, 周旬, 王晓东 等. 含铜双相钢“铜脆”缺陷分析与控制措施研究 [J]. 热加工工艺, 2017, 46: 246
22 Mao H X, Zhang W Z. Effect of the residual copper in steel on the product properties and its countermeasures [J]. Henan Metall., 2000, 8(3): 13
茅洪祥, 张望洲. 钢中残余铜的危害及其对策 [J]. 河南冶金, 2000, 8(3): 13
23 Li J H, Chen S H, Chen F Y. Reseach of surface defect in copper-containing hot rolling steel plate [J]. Phys. Test. Chem. Anal., 2006, 42A: 606
李建华, 陈士华, 陈方玉. 含铜热轧钢板表面缺陷的研究 [J]. 理化检验, 2006, 42A: 606
[1] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[2] LIU Yutong, CHEN Zhenyu, ZHU Zhongliang, FENG Rui, BAO Hansheng, ZHANG Naiqiang. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[3] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[4] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[5] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[6] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[7] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[9] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[10] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[11] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[13] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[14] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[15] Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
No Suggested Reading articles found!